Show simple item record

The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonization

dc.contributor.authorSvensson, Sarah L.en_US
dc.contributor.authorDavis, Lindsay M.en_US
dc.contributor.authorMacKichan, Joanna K.en_US
dc.contributor.authorAllan, Brenda J.en_US
dc.contributor.authorPajaniappan, Mohanasundarien_US
dc.contributor.authorThompson, Stuart A.en_US
dc.contributor.authorGaynor, Erin C.en_US
dc.date.accessioned2010-06-01T18:38:17Z
dc.date.available2010-06-01T18:38:17Z
dc.date.issued2009-01en_US
dc.identifier.citationSvensson, Sarah L.; Davis, Lindsay M.; MacKichan, Joanna K.; Allan, Brenda J.; Pajaniappan, Mohanasundari; Thompson, Stuart A.; Gaynor, Erin C. (2009). "The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonization." Molecular Microbiology 71(1): 253-272. <http://hdl.handle.net/2027.42/71839>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71839
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19017270&dopt=citationen_US
dc.description.abstractCampylobacter jejuni , a prevalent cause of bacterial gastroenteritis, must adapt to different environments to be a successful pathogen. We previously identified a C. jejuni two-component regulatory system (Cj1226/7c) as upregulated during cell infections. Analyses described herein led us to designate the system CprRS ( C ampylobacter p lanktonic growth r egulation). While the response regulator was essential, a cprS sensor kinase mutant was viable. The δ cprS mutant displayed an apparent growth defect and formed dramatically enhanced and accelerated biofilms independent of upregulation of previously characterized surface polysaccharides. δ cprS also displayed a striking dose-dependent defect for colonization of chicks and was modestly enhanced for intracellular survival in INT407 cells. Proteomics analyses identified changes consistent with modulation of essential metabolic genes, upregulation of stress tolerance proteins, and increased expression of MOMP and FlaA. Consistent with expression profiling, we observed enhanced motility and secretion in δ cprS , and decreased osmotolerance and oxidative stress tolerance. We also found that C. jejuni biofilms contain a DNase I-sensitive component and that biofilm formation is influenced by deoxycholate and the metabolic substrate fumarate. These results suggest that CprRS influences expression of factors important for biofilm formation, colonization and stress tolerance, and also add to our understanding of C. jejuni biofilm physiology.en_US
dc.format.extent120926 bytes
dc.format.extent1027024 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 Blackwell Publishingen_US
dc.titleThe CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonizationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationotherDepartment of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.en_US
dc.contributor.affiliationotherInstitute of Environmental Science and Research, Porirua, New Zealand.en_US
dc.contributor.affiliationotherVaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada.en_US
dc.contributor.affiliationotherDepartment of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA.en_US
dc.identifier.pmid19017270en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71839/1/MMI_6534_sm_Tables_S1-S3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71839/2/j.1365-2958.2008.06534.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2008.06534.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAltekruse, S.F., Stern, N.J., Fields, P.I., and Swerdlow, D.L. ( 1999 ) Campylobacter jejuni – an emerging foodborne pathogen. Emerg Infect Dis 5: 28 – 35.en_US
dc.identifier.citedreferenceAsakura, H., Yamasaki, M., Yamamoto, S., and Igimi, S. ( 2007 ) Deletion of peb4 gene impairs cell adhesion and biofilm formation in Campylobacter jejuni. FEMS Microbiol Lett 275: 278 – 285.en_US
dc.identifier.citedreferenceBacon, D.J., Alm, R.A., Burr, D.H., Hu, L., Kopecko, D.J., Ewing, C.P., et al. ( 2000 ) Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. Infect Immun 68: 4384 – 4390.en_US
dc.identifier.citedreferenceBranda, S.S., Vik, S., Friedman, L., and Kolter, R. ( 2005 ) Biofilms: the matrix revisited. Trends Microbiol 13: 20 – 26.en_US
dc.identifier.citedreferenceBras, A.M., Chatterjee, S., Wren, B.W., Newell, D.G., and Ketley, J.M. ( 1999 ) A novel Campylobacter jejuni two-component regulatory system important for temperature-dependent growth and colonization. J Bacteriol 181: 3298 – 3302.en_US
dc.identifier.citedreferenceBrondsted, L., Andersen, M.T., Parker, M., Jorgensen, K., and Ingmer, H. ( 2005 ) The HtrA protease of Campylobacter jejuni is required for heat and oxygen tolerance and for optimal interaction with human epithelial cells. Appl Environ Microbiol 71: 3205 – 3212.en_US
dc.identifier.citedreferenceButzler, J.P. ( 2004 ) Campylobacter, from obscurity to celebrity. Clin Microbiol Infect 10: 868 – 876.en_US
dc.identifier.citedreferenceCandon, H.L., Allan, B.J., Fraley, C.D., and Gaynor, E.C. ( 2007 ) Polyphosphate kinase 1 is a pathogenesis determinant in Campylobacter jejuni. J Bacteriol 189: 8099 – 8108.en_US
dc.identifier.citedreferenceChan, K.F., Le Tran, H., Kanenaka, R.Y., and Kathariou, S. ( 2001 ) Survival of clinical and poultry-derived isolates of Campylobacter jejuni at a low temperature (4 degrees C). Appl Environ Microbiol 67: 4186 – 4191.en_US
dc.identifier.citedreferenceCucarella, C., Solano, C., Valle, J., Amorena, B., Lasa, I., and Penades, J.R. ( 2001 ) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183: 2888 – 2896.en_US
dc.identifier.citedreferenceDong, Y.H., Zhang, X.F., Soo, H.M., Greenberg, E.P., and Zhang, L.H. ( 2008 ) The two-component response regulator PprB modulates quorum-sensing signal production and global gene expression in Pseudomonas aeruginosa. Mol Microbiol 69: 780.en_US
dc.identifier.citedreferenceEhrlich, G.D., Hu, F.Z., Shen, K., Stoodley, P., and Post, J.C. ( 2005 ) Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin Orthop Relat Res 437: 20 – 24.en_US
dc.identifier.citedreferenceEppinger, M., Baar, C., Raddatz, G., Huson, D.H., and Schuster, S.C. ( 2004 ) Comparative analysis of four Campylobacterales. Nat Rev Microbiol 2: 872 – 885.en_US
dc.identifier.citedreferenceFalkow, S. ( 2004 ) Molecular Koch's postulates applied to bacterial pathogenicity – a personal recollection 15 years later. Nat Rev Microbiol 2: 67 – 72.en_US
dc.identifier.citedreferenceFields, J.A., and Thompson, S.A. ( 2008 ) Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion. J Bacteriol 190: 3411 – 3416.en_US
dc.identifier.citedreferenceGaynor, E.C., Cawthraw, S., Manning, G., MacKichan, J.K., Falkow, S., and Newell, D.G. ( 2004 ) The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J Bacteriol 186: 503 – 517.en_US
dc.identifier.citedreferenceGaynor, E.C., Wells, D.H., MacKichan, J.K., and Falkow, S. ( 2005 ) The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol Microbiol 56: 8 – 27.en_US
dc.identifier.citedreferenceGjermansen, M., Ragas, P., Sternberg, C., Molin, S., and Tolker-Nielsen, T. ( 2005 ) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol 7: 894 – 904.en_US
dc.identifier.citedreferenceHelms, M., Simonsen, J., and Molbak, K. ( 2006 ) Foodborne bacterial infection and hospitalization: a registry-based study. Clin Infect Dis 42: 498 – 506.en_US
dc.identifier.citedreferenceHendrixson, D.R., and DiRita, V.J. ( 2004 ) Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52: 471 – 484.en_US
dc.identifier.citedreferenceHitchcock, P.J., and Brown, T.M. ( 1983 ) Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154: 269 – 277.en_US
dc.identifier.citedreferenceHofreuter, D.J., Tsai, R.O., Watson, V., Novik, B., Altman, M., Benitez, C., et al. ( 2006 ) Unique features of a highly pathogenic Campylobacter jejuni strain. Infect Immun 74: 4694 – 4707.en_US
dc.identifier.citedreferenceHung, D.T., Zhu, J., Sturtevant, D., and Mekalanos, J.J. ( 2006 ) Bile acids stimulate biofilm formation in Vibrio cholerae. Mol Microbiol 59: 193 – 201.en_US
dc.identifier.citedreferenceHussa, E.A., Darnell, C.L., and Visick, K.L. ( 2008 ) RscS functions upstream of SypG to control the syp locus and biofilm formation in Vibrio fischeri. J Bacteriol 190: 4576 – 4583.en_US
dc.identifier.citedreferenceJacobs-Rietsma, W. ( 2000 ) Campylobacter in the food supply. In Campylobacter. Nachamkin, M.J.B.I. (ed.). Washington, DC: American Society for Microbiology Press, pp. 467 – 482.en_US
dc.identifier.citedreferenceJeon, B., Itoh, K., Misawa, N., and Ryu, S. ( 2003 ) Effects of quorum sensing on flaA transcription and autoagglutination in Campylobacter jejuni. Microbiol Immunol 47: 833 – 839.en_US
dc.identifier.citedreferenceJoshua, G.W., Guthrie-Irons, C., Karlyshev, A.V., and Wren, B.W. ( 2006 ) Biofilm formation in Campylobacter jejuni. Microbiology 152: 387 – 396.en_US
dc.identifier.citedreferenceKalmokoff, M., Lanthier, P., Tremblay, T.L., Foss, M., Lau, P.C., Sanders, G., et al. ( 2006 ) Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 188: 4312 – 4320.en_US
dc.identifier.citedreferenceKarlyshev, A.V., and Wren, B.W. ( 2005 ) Development and application of an insertional system for gene delivery and expression in Campylobacter jejuni. Appl Environ Microbiol 71: 4004 – 4013.en_US
dc.identifier.citedreferenceKonkel, M.E., Klena, J.D., Rivera-Amill, V., Monteville, M.R., Biswas, D., Raphael, B., and Mickelson, J. ( 2004 ) Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol 186: 3296 – 3303.en_US
dc.identifier.citedreferenceKorlath, J.A., Osterholm, M.T., Judy, L.A., Forfang, J.C., and Robinson, R.A. ( 1985 ) A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J Infect Dis 152: 592 – 596.en_US
dc.identifier.citedreferenceKulasekara, H.D., Ventre, I., Kulasekara, B.R., Lazdunski, A., Filloux, A., and Lory, S. ( 2005 ) A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55: 368 – 380.en_US
dc.identifier.citedreferenceLeon-Kempis Mdel, R., Guccione, E., Mulholland, F., Williamson, M.P., and Kelly, D.J. ( 2006 ) The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. Mol Microbiol 60: 1262 – 1275.en_US
dc.identifier.citedreferenceMcCleary, W.R., and Stock, J.B. ( 1994 ) Acetyl phosphate and the activation of two-component response regulators. J Biol Chem 269: 31567 – 31572.en_US
dc.identifier.citedreferenceMacKichan, J.K., Gaynor, E.C., Chang, C., Cawthraw, S., Newell, D.G., Miller, J.F., and Falkow, S. ( 2004 ) The Campylobacter jejuni dccRS two-component system is required for optimal in vivo colonization but is dispensable for in vitro growth. Mol Microbiol 54: 1269 – 1286.en_US
dc.identifier.citedreferenceMcLennan, M.K., Ringoir, D.D., Frirdich, E., Svensson, S.L., Wells, D.H., Jarrell, H., et al. ( 2007 ) Campylobacter jejuni biofilms up-regulated in the absence of the stringent response utilize a calcofluor white-reactive surface polysaccharide. J Bacteriol 190: 1097 – 1107.en_US
dc.identifier.citedreferenceMalik-Kale, P., Parker, C.T., and Konkel, M.E. ( 2008 ) Culture of Campylobacter jejuni with sodium deoxycholate induces virulence gene expression. J Bacteriol 190: 2286 – 2297.en_US
dc.identifier.citedreferenceMarchler-Bauer, A., and Bryant, S.H. ( 2004 ) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32: W327 – W331.en_US
dc.identifier.citedreferenceMihaljevic, R.R., Sikic, M., Klancnik, A., Brumini, G., Mozina, S.S., and Abram, M. ( 2007 ) Environmental stress factors affecting survival and virulence of Campylobacter jejuni. Microb Pathog 43: 120 – 125.en_US
dc.identifier.citedreferenceMoser, I., Schroeder, W., and Salnikow, J. ( 1997 ) Campylobacter jejuni major outer membrane protein and a 59-kDa protein are involved in binding to fibronectin and INT 407 cell membranes. FEMS Microbiol Lett 157: 233 – 238.en_US
dc.identifier.citedreferenceMuller, S., Pflock, M., Schar, J., Kennard, S., and Beier, D. ( 2007 ) Regulation of expression of atypical orphan response regulators of Helicobacter pylori. Microbiol Res 162: 1 – 14.en_US
dc.identifier.citedreferenceNakagawa, S., Takaki, Y., Shimamura, S., Reysenbach, A.L., Takai, K., and Horikoshi, K. ( 2007 ) Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci USA 104: 12146 – 12150.en_US
dc.identifier.citedreferenceNeal, A.L., Dublin, S.N., Taylor, J., Bates, D.J., Burns, J.L., Apkarian, R., and DiChristina, T.J. ( 2007 ) Terminal electron acceptors influence the quantity and chemical composition of capsular exopolymers produced by anaerobically growing Shewanella spp. Biomacromolecules 8: 166 – 174.en_US
dc.identifier.citedreferenceO'Toole, G.A., and Kolter, R. ( 1998 ) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28: 449 – 461.en_US
dc.identifier.citedreferenceOunissi, H., Derlot, E., Carlier, C., and Courvalin, P. ( 1990 ) Gene homogeneity for aminoglycoside-modifying enzymes in gram-positive cocci. Antimicrob Agents Chemother 34: 2164 – 2168.en_US
dc.identifier.citedreferenceParkhill, J., Wren, B.W., Mungall, K., Ketley, J.M., Churcher, C., Basham, D., et al. ( 2000 ) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665 – 668.en_US
dc.identifier.citedreferencePearson, B.M., Gaskin, D.J.H., Segers, R.P.A.M., Wells, J.M., Nuijten, P.J.M., and van Vliet, A.H.M. ( 2007 ) The complete genome sequence of Campylobacter jejuni strain 81116 (NCTC11828). J Bacteriol 189: 8402 – 8403.en_US
dc.identifier.citedreferencePoly, F., Ewing, C., Goon, S., Hickey, T.E., Rockabrand, D., Majam, G., et al. ( 2007 ) Heterogeneity of a Campylobacter jejuni protein that is secreted through the flagellar filament. Infect Immun 75: 3859 – 3867.en_US
dc.identifier.citedreferencePrice, M.N., Huang, K.H., Alm, E.J., and Arkin, A.P. ( 2005 ) A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res 33: 880 – 892.en_US
dc.identifier.citedreferenceQuon, K.C., Marczynski, G.T., and Shapiro, L. ( 1996 ) Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84: 83 – 93.en_US
dc.identifier.citedreferenceRaphael, B.H., Pereira, S., Flom, G.A., Zhang, Q., Ketley, J.M., and Konkel, M.E. ( 2005 ) The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. J Bacteriol 187: 3662 – 3670.en_US
dc.identifier.citedreferenceReeser, R.J., Medler, R.T., Billington, S.J., Jost, B.H., and Joens, L.A. ( 2007 ) Characterization of Campylobacter jejuni biofilms under defined growth conditions. Appl Environ Microbiol 73: 1908 – 1913.en_US
dc.identifier.citedreferenceRomling, U. ( 2005 ) Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol Life Sci 62: 1234 – 1246.en_US
dc.identifier.citedreferenceRomling, U., and Amikam, D. ( 2006 ) Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9: 218 – 228.en_US
dc.identifier.citedreferenceSambrook, J., and Russell, D.W. ( 2001 ) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.en_US
dc.identifier.citedreferenceSampathkumar, B., Napper, S., Carrillo, C.D., Willson, P., Taboada, E., Nash, J.H., et al. ( 2006 ) Transcriptional and translational expression patterns associated with immobilized growth of Campylobacter jejuni. Microbiology 152: 567 – 577.en_US
dc.identifier.citedreferenceSchar, J., Sickmann, A., and Beier, D. ( 2005 ) Phosphorylation-independent activity of atypical response regulators of Helicobacter pylori. J Bacteriol 187: 3100 – 3109.en_US
dc.identifier.citedreferenceSeal, B.S., Hiett, K.L., Kuntz, R.L., Woolsey, R., Schegg, K.M., Ard, M., and Stintzi, A. ( 2007 ) Proteomic analyses of a robust versus a poor chicken gastrointestinal colonizing isolate of Campylobacter jejuni. J Proteome Res 6: 4582 – 4591.en_US
dc.identifier.citedreferenceShrout, J.D., Chopp, D.L., Just, C.L., Hentzer, M., Givskov, M., and Parsek, M.R. ( 2006 ) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62: 1264 – 1277.en_US
dc.identifier.citedreferenceStark, R.M., Gerwig, G.J., Pitman, R.S., Potts, L.F., Williams, N.A., Greenman, J., et al. ( 1999 ) Biofilm formation by Helicobacter pylori. Lett Appl Microbiol 28: 121 – 126.en_US
dc.identifier.citedreferenceSzurmant, H., Nelson, K., Kim, E.-J., Perego, M., and Hoch, J.A. ( 2005 ) YycH regulates the activity of the essential YycFG two-component system in Bacillus subtilis. J Bacteriol 187: 5419 – 5426.en_US
dc.identifier.citedreferenceToledo-Arana, A., Valle, J., Solano, C., Arrizubieta, M.J., Cucarella, C., Lamata, M., et al. ( 2001 ) The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67: 4538 – 4545.en_US
dc.identifier.citedreferenceTrachoo, N., and Frank, J.F. ( 2002 ) Effectiveness of chemical sanitizers against Campylobacter jejuni -containing biofilms. J Food Prot 65: 1117 – 1121.en_US
dc.identifier.citedreferenceTrachoo, N., Frank, J.F., and Stern, N.J. ( 2002 ) Survival of Campylobacter jejuni in biofilms isolated from chicken houses. J Food Prot 65: 1110 – 1116.en_US
dc.identifier.citedreferenceTsai, C.M., and Frasch, C.E. ( 1982 ) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119: 115 – 119.en_US
dc.identifier.citedreferenceVerhamme, D.T., Arents, J.C., Postma, P.W., Crielaard, W., and Hellingwerf, K.J. ( 2002 ) Investigation of in vivo cross-talk between key two-component systems of Escherichia coli. Microbiology 148: 69 – 78.en_US
dc.identifier.citedreferenceWatson, R.O., and Galan, J.E. ( 2008 ) Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS Pathog 4: e14.en_US
dc.identifier.citedreferenceWhitchurch, C.B., Tolker-Nielsen, T., Ragas, P.C., and Mattick, J.S. ( 2002 ) Extracellular DNA required for bacterial biofilm formation. Science 295: 1487.en_US
dc.identifier.citedreferenceWoodall, C.A., Jones, M.A., Barrow, P.A., Hinds, J., Marsden, G.L., Kelly, D.J., et al. ( 2005 ) Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect Immun 73: 5278 – 5285.en_US
dc.identifier.citedreferenceWosten, M.M., Boeve, M., Koot, M.G., van Nuene, A.C., and van der Zeijst, B.A. ( 1998 ) Identification of Campylobacter jejuni promoter sequences. J Bacteriol 180: 594 – 599.en_US
dc.identifier.citedreferenceWosten, M.M., Wagenaar, J.A., and van Putten, J.P. ( 2004 ) The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni. J Biol Chem 279: 16214 – 16222.en_US
dc.identifier.citedreferenceWosten, M.M., Parker, C.T., van Mourik, A., Guilhabert, M.R., van Dijk, L., and van Putten, J.P. ( 2006 ) The Campylobacter jejuni PhosS/PhosR operon represents a non-classical phosphate-sensitive two-component system. Mol Microbiol 62: 278 – 291.en_US
dc.identifier.citedreferenceYao, R., Alm, R.A., Trust, T.J., and Guerry, P. ( 1993 ) Construction of new Campylobacter cloning vectors and a new mutational cat cassette. Gene 130: 127 – 130.en_US
dc.identifier.citedreferenceYoung, K.T., Davis, L.M., and Dirita, V.J. ( 2007 ) Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 5: 665 – 679.en_US
dc.identifier.citedreferenceYoung, V.B., Mansfield ( 2005 ) Campylobacter infection – clinical context. In Campylobacter, Molecular and Cellular Biology. Ketley, J.M., and Konkel, M.E. (eds). Norfolk: Horizon Bioscience, pp. 1 – 12.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.