Show simple item record

Mycobacterial FurA is a negative regulator of catalase–peroxidase gene katG

dc.contributor.authorZahrt, Thomas C.en_US
dc.contributor.authorSong, Jianen_US
dc.contributor.authorSiple, Jessicaen_US
dc.contributor.authorDeretic, Vojoen_US
dc.date.accessioned2010-06-01T18:38:47Z
dc.date.available2010-06-01T18:38:47Z
dc.date.issued2001-03en_US
dc.identifier.citationZahrt, Thomas C . ; Song, Jian; Siple, Jessica; Deretic, Vojo (2001). "Mycobacterial FurA is a negative regulator of catalase–peroxidase gene katG ." Molecular Microbiology 39(5): 1174-1185. <http://hdl.handle.net/2027.42/71847>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71847
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11251835&dopt=citationen_US
dc.format.extent243852 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science, Ltden_US
dc.rightsBlackwell Science Ltden_US
dc.titleMycobacterial FurA is a negative regulator of catalase–peroxidase gene katGen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Medical Science Building II, Ann Arbor, MI 48109, USA.en_US
dc.identifier.pmid11251835en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71847/1/j.1365-2958.2001.02321.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2001.02321.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAltuvia, S., Almiron, M., Huisman, G., Kolter, R. & Storz, G. ( 1994 ) The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol 13: 265 – 272.en_US
dc.identifier.citedreferenceArmstrong, J.A. & Hart, P.D.A. ( 1971 ) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134: 713 – 740.en_US
dc.identifier.citedreferenceBaillon, M.L., van Vliet, A.H., Ketley, J.M., Constantinidou, C. & Penn, C.W. ( 1999 ) An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J Bacteriol 181: 4798 – 4804.en_US
dc.identifier.citedreferenceBanerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Um, K.S. & Wilson, T., et al. ( 1994 ) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227 – 230.en_US
dc.identifier.citedreferenceBartholomew, W.R. ( 1968 ) Multiple catalase enzymes in two species of mycobacteria. Am Rev Respir Dis 97: 710 – 712.en_US
dc.identifier.citedreferenceBillman-Jacobe, H., Sloan, J. & Coppel, R.L. ( 1996 ) Analysis of isoniazid-resistant transposon mutants of Mycobacterium smegmatis. FEMS Microbiol Lett 144: 47 – 52.en_US
dc.identifier.citedreferenceBsat, N., Herbig, A., Casillas-Martinez, L., Setlow, P. & Helmann, J.D. ( 1998 ) Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29: 189 – 198.en_US
dc.identifier.citedreferenceChan, J. & Kaufmann, S.H.E. ( 1994 ) Immune mechanisms of protection. In Tuberculosis: Pathogenesis, Protection and Control. Bloom, B.R. (ed. ). Washington, DC: American Society for Microbiology Press, pp. 389 – 415.en_US
dc.identifier.citedreferenceChan, J., Fan, X.D., Hunter, S.W., Brennan, P.J. & Bloom, B.R. ( 1991 ) Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect Immun 59: 1755 – 1761.en_US
dc.identifier.citedreferenceChen, L., Xie, Q.W. & Nathan, C. ( 1998 ) Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol Cell 1: 795 – 805.en_US
dc.identifier.citedreferenceChristman, M.F., Morgan, R.W., Jacobson, F.S. & Ames, B.N. ( 1985 ) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41: 753 – 762.en_US
dc.identifier.citedreferenceChristman, M.F., Storz, G. & Ames, B.N. ( 1989 ) OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci USA 86: 3484 – 3488.en_US
dc.identifier.citedreferenceClemens, D.L. & Horwitz, M.A. ( 1995 ) Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 181: 257 – 270.en_US
dc.identifier.citedreferenceCooper, A.M., Segal, B.H., Frank, A.A., Holland, S.M. & Orme, I.M. ( 2000 ) Transient loss of resistance to pulmonary tuberculosis in p47 phox–/– mice. Infect Immun 68: 1231 – 1234.en_US
dc.identifier.citedreferenceCurcic, R., Dhandayuthapani, S. & Deretic, V. ( 1994 ) Gene expression in mycobacteria: transcriptional fusions based on xylE and analysis of the promoter region of the response regulator mtrA from Mycobacterium tuberculosis. Mol Microbiol 13: 1057 – 1064.en_US
dc.identifier.citedreferenceDannenberg, A.M., Jr, & Rook, G.A. ( 1994 ) Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses-dual mechanisms that control bacillary multiplication. In Tuberculosis: Pathogenesis, Protection, and Control. Bloom, B.R. (ed.). Washington, DC: American Society for Microbiology Press, pp. 459 – 483.en_US
dc.identifier.citedreferenceDeretic, V. & Fratti, R.A. ( 1999 ) Mycobacterium tuberculosis phagosome. Mol Microbiol 31: 1603 – 1609.en_US
dc.identifier.citedreferenceDeretic, V., Philipp, W., Dhandayuthapani, S., Mudd, M.H., Curcic, R. & Garbe, T., et al. ( 1995 ) Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: implications for sensitivity to isoniazid. Mol Microbiol 17: 889 – 900.en_US
dc.identifier.citedreferenceDeretic, V., Pagan-Ramos, E., Zhang, Y., Dhandayuthapani, S. & Via, L.E. ( 1996 ) The extreme sensitivity of Mycobacterium tuberculosis to the front-line antituberculosis drug isoniazid. Nature Biotechnol 14: 1557 – 1561.en_US
dc.identifier.citedreferenceDeretic, V., Song, J. & Pagan-Ramos, E. ( 1997 ) Loss of oxyR in Mycobacterium tuberculosis. Trends Microbiol 5: 367 – 372.en_US
dc.identifier.citedreferenceDhandayuthapani, S., Zhang, Y., Mudd, M.H. & Deretic, V. ( 1996 ) Oxidative stress response and its role in sensitivity to isoniazid in mycobacteria: characterization and inducibility of ahpC by peroxides in Mycobacterium smegmatis and lack of expression in M. aurum and M. tuberculosis. J Bacteriol 178: 3641 – 3649.en_US
dc.identifier.citedreferenceDubrac, S. & Touati, D. ( 2000 ) Fur positive regulation of iron superoxide dismutase in Escherichia coli: functional analysis of the sodB promoter. J Bacteriol 182: 3802 – 3808.en_US
dc.identifier.citedreferenceDussurget, O., Rodriguez, M. & Smith, I. ( 1996 ) An ideR mutant of Mycobacterium smegmatis has derepressed siderophore production and an altered oxidative-stress response. Mol Microbiol 22: 535 – 544.en_US
dc.identifier.citedreferenceEiglmeier, K., Fsihi, H., Heym, B. & Cole, S.T. ( 1997 ) On the catalase-peroxidase gene, katG, of Mycobacterium leprae and the implications for treatment of leprosy with isoniazid. FEMS Microbiol Lett 149: 273 – 278.en_US
dc.identifier.citedreferenceFalkinham, J.O., III ( 1996 ) Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev 9: 177 – 215.en_US
dc.identifier.citedreferenceHahn, J.S., Oh, S.Y. & Roe, J.H. ( 2000 ) Regulation of the furA and catC operon, encoding a ferric uptake regulator homologue and catalase-peroxidase, respectively in Streptomyces coelicolor A3(2). J Bacteriol 182: 3767 – 3774.en_US
dc.identifier.citedreferenceHassett, D.J., Howell, M.L., Ochsner, U.A., Vasil, M.L., Johnson, Z. & Dean, G.E. ( 1997 ) An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa: fur mutants produce elevated alginate levels. J Bacteriol 179: 1452 – 1459.en_US
dc.identifier.citedreferenceHeym, B., Zhang, Y., Poulet, S., Young, D. & Cole, S.T. ( 1993 ) Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacteriol 175: 4255 – 4259.en_US
dc.identifier.citedreferenceHeym, B., Alzari, P.M., Honore, N. & Cole, S.T. ( 1995 ) Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol 15: 235 – 245.en_US
dc.identifier.citedreferenceHeym, B., Stavropoulos, E., Honore, N., Domenech, P., Saint-Joanis, B. & Wilson, T.M., et al. ( 1997 ) Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis. Infect Immun 65: 1395 – 1401.en_US
dc.identifier.citedreferenceJacobs, W.R., Jr, Kalpana, G.V., Cirillo, J.D., Pascopella, L., Snapper, S.B. & Udani, R.A., et al. ( 1991 ) Genetic systems for mycobacteria. Methods Enzymol 204: 537 – 555.en_US
dc.identifier.citedreferenceLee, H.S., Lee, Y.S., Kim, H.S., Choi, J.Y., Hassan, H.M. & Chung, M.H. ( 1998 ) Mechanism of regulation of 8-hydroxyguanine endonuclease by oxidative stress: roles of FNR, ArcA, and Fur. Free Radical Biol Med 24: 1193 – 1201.en_US
dc.identifier.citedreferenceLei, B., Wei, C.J. & Tu, S.C. ( 2000 ) Action mechanism of antitubercular isoniazid. Activation by Mycobacterium tuberculosis KatG, isolation, and characterization of inhA inhibitor. J Biol Chem 275: 2520 – 2526.en_US
dc.identifier.citedreferenceLi, Z., Kelley, C., Collins, F., Rouse, D. & Morris, S. ( 1998 ) Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J Infect Dis 177: 1030 – 1035.en_US
dc.identifier.citedreferenceManca, C., Paul, S., Barry, C.E., III, Freedman, V.H. & Kaplan, G. ( 1999 ) Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect Immun 67: 74 – 79.en_US
dc.identifier.citedreferenceMdluli, K., Slayden, R.A., Zhu, Y., Ramaswamy, S., Pan, X. & Mead, D., et al. ( 1998 ) Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science 280: 1607 – 1610.en_US
dc.identifier.citedreferenceMiddlebrook, G. & Cohn, M.L. ( 1953 ) Some observations on the pathogenicity of isoniazid-resistant variants of tubercle bacilli. Science 118: 297 – 299.en_US
dc.identifier.citedreferenceMitchison, D.A., Selkon, J.B. & Lloyd, J. ( 1963 ) Virulence in the guinea pig, susceptibility to hydrogen peroxide, and catalase activity of isoniazid-sensitive tubercle bacilli from South Indian and British patients. J Pathol Bacteriol 86: 377 – 386.en_US
dc.identifier.citedreferenceMorse, W.C., Weiser, O.L., Kuhns, D.M., Fusillo, M., Dail, M.C. & Evans, J.R. ( 1954 ) Study of the virulence of isoniazid-resistant tubercle bacilli in guinea pigs and mice. Am Rev Tuberc 69: 464 – 468.en_US
dc.identifier.citedreferenceMusser, J.M. ( 1995 ) Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev 8: 496 – 514.en_US
dc.identifier.citedreferenceMustafa, T., Phyu, S., Nilsen, R., Bjune, G. & Jonsson, R. ( 1999 ) Increased expression of Fas ligand on Mycobacterium tuberculosis infected macrophages: a potential novel mechanism of immune evasion by Mycobacterium tuberculosis Inflammation 23: 507 – 521.en_US
dc.identifier.citedreferenceNakata, N., Matsuoka, M., Kashiwabara, Y., Okada, N. & Sasakawa, C. ( 1997 ) Nucleotide sequence of the Mycobacterium leprae katG region. J Bacteriol 179: 3053 – 3057.en_US
dc.identifier.citedreferenceNiederhoffer, E.C., Naranjo, C.M., Bradley, K.L. & Fee, J.A. ( 1990 ) Control of Escherichia coli superoxide dismutase ( sodA and sodB ) genes by the ferric uptake regulation ( fur ) locus. J Bacteriol 172: 1930 – 1938.en_US
dc.identifier.citedreferencePagan-Ramos, E., Song, J., McFalone, M., Mudd, M.H. & Deretic, V. ( 1998 ) Oxidative stress response and characterization of the oxyR-ahpC and furA-katG loci in Mycobacterium marinum. J Bacteriol 180: 4856 – 4864.en_US
dc.identifier.citedreferencePancholi, P., Mirza, A., Bhardwaj, N. & Steinman, R.M. ( 1993 ) Sequestration from immune CD4+ T cells of mycobacteria growing in human macrophages. Science 260: 984 – 986.en_US
dc.identifier.citedreferencePatzer, S.I. & Hantke, K. ( 1998 ) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28: 1199 – 1210.en_US
dc.identifier.citedreferenceRogall, T., Wolters, J., Flohr, T. & Bottger, E.C. ( 1990 ) Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int J Syst Bacteriol 40: 323 – 330.en_US
dc.identifier.citedreferenceRosner, J.L. ( 1993 ) Susceptibilities of oxyR regulon mutants of Escherichia coli and Salmonella typhimurium to isoniazid. Antimicrob Agents Chemother 37: 2251 – 2253.en_US
dc.identifier.citedreferenceRouse, D.A. & Morris, S.L. ( 1995 ) Molecular mechanisms of isoniazid resistance in Mycobacterium tuberculosis and Mycobacterium bovis. Infect Immun 63: 1427 – 1433.en_US
dc.identifier.citedreferenceRussell, D.G. ( 1995 ) Mycobacterium and Leishmania: stowaways in the endosomal network. Trends Cell Biol 5: 125 – 128.en_US
dc.identifier.citedreferenceSherman, D.R., Sabo, P.J., Hickey, M.J., Arain, T.M., Mahairas, G.G. & Yuan, Y., et al. ( 1995 ) Disparate responses to oxidative stress in saprophytic and pathogenic mycobacteria. Proc Natl Acad Sci USA 92: 6625 – 6629.en_US
dc.identifier.citedreferenceShoeb, H.A., Bowman, B.U., Jr, Ottolenghi, A.C. & Merola, A.J. ( 1985 ) Peroxidase-mediated oxidation of isoniazid. Antimicrob Agents Chemother 27: 399 – 403.en_US
dc.identifier.citedreferenceSnapper, S.B., Melton, R.E., Mustafa, S., Kieser, T. & Jacobs, W.R., Jr ( 1990 ) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4: 1911 – 1919.en_US
dc.identifier.citedreferenceStenger, S., Niazi, K.R. & Modlin, R.L. ( 1998 ) Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. J Immunol 161: 3582 – 3588.en_US
dc.identifier.citedreferenceStorz, G. & Altuvia, S. ( 1994 ) OxyR regulon. Methods Enzymol 234: 217 – 223.en_US
dc.identifier.citedreferenceStorz, G. & Imlay, J.A. ( 1999 ) Oxidative stress. Curr Opin Microbiol 2: 188 – 194.en_US
dc.identifier.citedreferenceStover, C.K., de la Cruz, V.F., Fuerst, T.R., Burlein, J.E., Benson, L.A. & Bennett, L.T., et al. ( 1991 ) New use of BCG for recombinant vaccines. Nature 351: 456 – 460.en_US
dc.identifier.citedreferenceTardat, B. & Touati, D. ( 1993 ) Iron and oxygen regulation of Escherichia coli MnSOD expression: competition between the global regulators Fur and ArcA for binding to DNA. Mol Microbiol 9: 53 – 63.en_US
dc.identifier.citedreferenceTartaglia, L.A., Storz, G. & Ames, B.N. ( 1989 ) Identification and molecular analysis of oxyR -regulated promoters important for the bacterial adaptation to oxidative stress. J Mol Biol 210: 709 – 719.en_US
dc.identifier.citedreferencevan Vliet, A.H.M., Wooldridge, K.G. & Ketley, J.M. ( 1998 ) Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180: 5291 – 5298.en_US
dc.identifier.citedreferencevan Vliet, A.H., Baillon, M.L., Penn, C.W. & Ketley, J.M. ( 1999 ) Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J Bacteriol 181: 6371 – 6376.en_US
dc.identifier.citedreferenceWayne, L.G. & Diaz, G.A. ( 1986 ) A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamide electrophoresis gels. Anal Biochem 157: 89 – 92.en_US
dc.identifier.citedreferenceWengenack, N.L., Todorovic, S., Yu, L. & Rusnak, F. ( 1998 ) Evidence for differential binding of isoniazid by Mycobacterium tuberculosis KatG and the isoniazid-resistant mutant KatG (S315T). Biochemistry 37: 15825 – 15834.en_US
dc.identifier.citedreferenceWilson, T.M., de Lisle, G.W. & Collins, D.M. ( 1995 ) Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol Microbiol 15: 1009 – 1015.en_US
dc.identifier.citedreferenceWilson, T., de Lisle, G.W., Marcinkeviciene, J.A., Blanchard, J.S. & Collins, D.M. ( 1998 ) Antisense RNA to ahpC, an oxidative stress defense gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology 144: 2687 – 2695.en_US
dc.identifier.citedreferenceWong, D.K., Lee, B.Y., Horwitz, M.A. & Gibson, B.W. ( 1999 ) Identification of fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Infect Immun 67: 327 – 336.en_US
dc.identifier.citedreferenceYu, K., Mitchell, C., Xing, Y., Magliozzo, R.S., Bloom, B.R. & Chan, J. ( 1999 ) Toxicity of nitrogen oxides and related oxidants on mycobacteria: M. tuberculosis is resistant to peroxynitrite anion. Tuberc Lung Dis 79: 191 – 198.en_US
dc.identifier.citedreferenceYuan, Y., Lee, R.E., Besra, G.S., Belisle, J.T. & Barry, C.E., III ( 1995 ) Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 92: 6630 – 6634.en_US
dc.identifier.citedreferenceZhang, Y., Heym, B., Allen, B., Young, D. & Cole, S. ( 1992 ) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358: 591 – 593.en_US
dc.identifier.citedreferenceZhang, Y., Dhandayuthapani, S. & Deretic, V. ( 1996 ) Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. Proc Natl Acad Sci USA 93: 13212 – 13216.en_US
dc.identifier.citedreferenceZheng, M., Doan, B., Schneider, T.D. & Storz, G. ( 1999 ) OxyR and SoxRS regulation of fur. J Bacteriol 181: 4639 – 4643.en_US
dc.identifier.citedreferenceZou, P., Borovok, I., Ortiz de Orue Lucana, D., Muller, D. & Schrempf, H. ( 1999 ) The mycelium-associated Streptomyces reticuli catalase-peroxidase, its gene and regulation by FurS. Microbiology 145: 549 – 559.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.