Show simple item record

Late Permian palaeomagnetic data east and west of the Urals

dc.contributor.authorBazhenov, Mikhail L.en_US
dc.contributor.authorGrishanov, Alexander N.en_US
dc.contributor.authorVan der Voo, Roben_US
dc.contributor.authorLevashova, Natalia M.en_US
dc.date.accessioned2010-06-01T18:42:00Z
dc.date.available2010-06-01T18:42:00Z
dc.date.issued2008-05en_US
dc.identifier.citationBazhenov, Mikhail L.; Grishanov, Alexander N.; Van der Voo, Rob; Levashova, Natalia M. (2008). "Late Permian palaeomagnetic data east and west of the Urals." Geophysical Journal International 173(2): 395-408. <http://hdl.handle.net/2027.42/71899>en_US
dc.identifier.issn0956-540Xen_US
dc.identifier.issn1365-246Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71899
dc.description.abstractWe studied Upper Permian redbeds from two areas, one between the Urals and the Volga River in the southeastern part of Baltica and the other in north Kazakhstan within the Ural-Mongol belt, which are about 900 km apart; a limited collection of Lower-Middle Triassic volcanics from north Kazakhstan was also studied. A high-temperature component that shows rectilinear decay to the origin was isolated from most samples of all three collections. For the Late Permian of north Kazakhstan, the area-mean direction of this component is D = 224.3°, I =−56.8°, k = 161, Α 95 = 2.7°, N = 18 sites, palaeopole at 53.4°N, 161.3°E; the fold test is positive. The Triassic result ( D = 55.9°, I =+69.1°, k = 208, Α 95 = 4.2°, N = 7 sites, pole at 57.0°N, 134.1°E) is confirmed by a positive reversal test. The corresponding palaeomagnetic poles from north Kazakhstan show good agreement with the APWP for Baltica, thus indicating no substantial motion between the two areas that are separated by the Urals. Our new mean Late Permian direction for SE Baltica ( D = 42.2°, I = 39.2°, k = 94, Α 95 = 3.5°, N = 17 sites; palaeopole at 45.6°N, 170.2°E) is confirmed as near-primary by a positive tilt test and the presence of dual-polarity directions. The corresponding pole also falls on the APWP of Baltica, but is far-sided with respect to the coeval reference poles, as the observed mean inclination is shallower than expected by 13°± 4°. In principle, lower-than-expected inclinations may be attributed to one or more of the following causes: relative tectonic displacements, quadrupole and octupole terms in the geomagnetic field, higher-order harmonics (incl. secular variation) of the same field, random scatter, non-removed overprints, or inclination error during remanence acquisition and/or diagenetic compaction. Our analysis shows that most mechanisms from the above list cannot explain the observed pattern, leaving as the most likely option that it must be accounted for by inclination shallowing. Comparison with selected coeval results from eastern Baltica (all within Russia) shows that all of them are biased in the same way. This implies that they cannot be used for analysis of geomagnetic field characteristics, such as non-dipole contributions, without a more adequate knowledge of the required correction for inclination shallowing.en_US
dc.format.extent2441617 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights©Journal compilation © 2008 RASen_US
dc.subject.otherPalaeomagnetic Secular Variationen_US
dc.subject.otherPalaeomagnetism Applied to Tectonicsen_US
dc.subject.otherAsiaen_US
dc.subject.otherEuropeen_US
dc.titleLate Permian palaeomagnetic data east and west of the Uralsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USAen_US
dc.contributor.affiliationotherGeological Institute, Academy of Sciences of Russia, Pyzhevsky Lane, 7, Moscow 119017, Russia. E-mail: mibazh@mail.ruen_US
dc.contributor.affiliationotherResearch Institute of Natural Sciences, Saratov State University, Astrakhanskaya st., 83, Saratov 410012, Russiaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71899/1/j.1365-246X.2008.03727.x.pdf
dc.identifier.doi10.1111/j.1365-246X.2008.03727.xen_US
dc.identifier.sourceGeophysical Journal Internationalen_US
dc.identifier.citedreferenceBaksi, A.K. & Farrar, E., 1991. 40 Ar/ 39 Ar dating of the Siberian Traps, USSR: evaluation of the ages of the two major extinction events relative to episodes of flood-basalt volcanism in the USSR and the Deccan Traps, India, Geology, 19, 461 – 464.en_US
dc.identifier.citedreferenceBekzhanov, G.R., Koshkin, V.Y., Nikitchenko, I.I., Skrinnik, L.I., Azizov, T.M. & Timush, A.V., 2000. Geological Structure of Kazakhstan, Acad. Mineral Resources of Republic of Kazakhstan, Almaty, 394 p. ( in Russian ).en_US
dc.identifier.citedreferenceBuslov, M.M., Fujiwara, Y., Iwata, K. & Semakov, N.N., 2004. Late Paleozoic–Early Mesozoic geodynamics of Central Asia, Gondwana Res., 7, 791 – 808.en_US
dc.identifier.citedreferenceCognÉ, J.P., 2003. PaleoMac: a Macintosh application for treating paleomagnetic data and making plate reconstructions, Geochem. Geophys. Geosyst., 4 ( 1 ), 1007, doi :.en_US
dc.identifier.citedreferenceChuvashov, B.I., 1999. Paleotectonics of the Ural mobile belt and adjacent region in the Late Permian, Dokl. Rus. Acad. Sci., 369, 361 – 364.en_US
dc.identifier.citedreferenceDanukalov, N.F., Kondruchina, L.S. & Chernikov, A.P., 1983. Paleozoic paleomagnetism of the South and Medial Urals, Acad. Sci. USSR, Ufa, 118 p. ( in Russian ).en_US
dc.identifier.citedreferenceDemarest, H.H., jr., 1983. Error analysis for the determination of tectonic rotation from paleomagnetic data, J. geophys. Res., 88, 4321 – 4328.en_US
dc.identifier.citedreferenceFisher, R.A., 1953. Dispersion on a sphere, Proc. R. Soc. London, Ser. A, 217, 295 – 305.en_US
dc.identifier.citedreferenceGialanella, P.R. et al., 1997. Late Permian magnetostratigraphy on the eastern Russian platform, Geologie en Mijnbouw, 76, 145 – 154.en_US
dc.identifier.citedreferenceGradstein, F.M. et al., 2004. A Geologic Time Scale 2004, Cambridge University Press, Cambridge ( see http://www.stratigraphy.org ).en_US
dc.identifier.citedreferenceHetzel, R. & Glodny, J., 2002. A crustal-scale, orogen-parallel strike-slip fault in the Middle Urals: age, magnitude of displacement, and geodynamic significance, Int. J. Earth Sci., 91, 231 – 245.en_US
dc.identifier.citedreferenceHodych, J.P., Bijaksana, S. & Patzold, R., 1999. Using magnetic anisotropy to correct for inclination shallowing in some magnetite-bearing deep-sea turbidites and limestones, Tectonophysics, 307, 191 – 205.en_US
dc.identifier.citedreferenceHornafius, J.S., 1985. Neogene tectonic rotation of the Santa Ynez Range, Western Transverse Ranges, California, suggested by paleomagnetic investigation of the Monterey Formation, J. geophys. Res., 90, 12 503 – 12 522.en_US
dc.identifier.citedreferenceIrving, E., 2004. The case for Pangea B, and the intra-Pangean megashear, in Timescales of the Paleomagnetic Field, Vol. 135, pp. 13 – 27, eds Channell, J.E.T., Kent, D.V., Lowrie, W. & Meert, J.G., AGU Geophys. Monogr.en_US
dc.identifier.citedreferenceJackson, M.J., Banerjee, S.K., Marvin, J.A., Lu, R. & Gruber, W., 1991. Detrital remanence, inclination errors and anhysteretic remanence anisotropy: quantitative model and experimental results, Geophys. J. Int., 104, 95 – 103.en_US
dc.identifier.citedreferenceKhain, V.E., 1977. Regional Geotectonics (Extra-Alpine Europe and Western Asia). Nedra, Moscow, 360 pp. ( in Russian ).en_US
dc.identifier.citedreferenceKhramov, A.N. & Sholpo, L.E., 1967. Paleomagnetism, Nedra, Leningrad, 252 p. ( in Russian ).en_US
dc.identifier.citedreferenceKhramov, A.N., Goncharov, G.I., Komissarova, R.A., Pisarevsky, S.A., Pogarskaya, I.A., Yu, S. & Rzhevsky, V.P., 1982. Rodionov, and I.P. Slautsitais, Paleomagnetology, Nedra, Leningrad, 312 p. ( in Russian ).en_US
dc.identifier.citedreferenceKhramov, A.N., Komissarova, R.A., Iosifidi, A.G., Popov, V.V. & Bazhenov, M.L., 2006. Upper Tatarian magnetostratigraphy of the Sukhona River sequence: a re-study, in Proceedings of the 6th International Conference “ Problems of Geocosmos ”, St. Petersburg State University, St. Petersburg, pp. 317 – 321, eds Troyan, V.N., Semenov, V.S. & Kubyshkina, M.V..en_US
dc.identifier.citedreferenceKing, R.F., 1955. Remanent magnetism of artificially deposited sediments, Monthly Notices Roy, Astron. Soc. Geophys. Suppl., 7, 115 – 134.en_US
dc.identifier.citedreferenceKirschvink, J.L., 1980. The least-square line and plane and the analysis of palaeomagnetic data, Geophys. J. Roy. Astron. Soc., 62, 699 – 718.en_US
dc.identifier.citedreferenceKodama, K.P. & Davi, J.M., 1995. A compaction correction for the paleomagnetism of the Cretaceous Pigeon Point Formation of California, Tectonics, 14, 1153 – 1164.en_US
dc.identifier.citedreferenceKulikov, P.K., 1974. The structure of basement of the West Siberian plate, in Tectonics of the Ural-Mongol Fold Belt, pp. 149 – 156, ed. Muratov, M.V., Nauka, Moscow ( in Russian ).en_US
dc.identifier.citedreferenceLevashova, N.M., Degtyarev, K.E., Bazhenov, M.L., Collins, A.Q. & Van der Voo, R., 2003. Permian Paleomagnetism of East Kazakhstan and the Amalgamation of Eurasia, Geophys. J. Int., 152, 677 – 687.en_US
dc.identifier.citedreferenceLitvinovich, N.V., Golubovskaya, T.N., Golubovsky, V.A., Gabay, N.L., Koperina, V.V. & Chumakova, N.F., 1974. Stratigraphy and Lithology of Upper Paleozoic Deposits of Western Central Kazakhstan, Nedra, Moscow, 183 p. ( in Russian ).en_US
dc.identifier.citedreferenceLuyendyk, B.P., 1989. Crustal rotation and fault slip in the continental transform zone in southern California, in Paleomagnetic Rotations and Continental Deformation, pp. 229 – 246, eds Kissel, C. & Laj, C., Kluwer Acad. Press, Dordrecht.en_US
dc.identifier.citedreferenceMcClelland Brown, E., 1983. Palaeomagnetic studies of fold development and propagation in the Pembrokeshire Old Red Sandstone, Tectonophysics, 98, 131 – 149.en_US
dc.identifier.citedreferenceMcElhinny, M.W., 1964. Statistical significance of the fold test in palaeomagnetism, Geophys. J. R. Astron. Soc., 8, 338 – 340.en_US
dc.identifier.citedreferenceMcFadden, P.L. & Jones, D.L., 1981. The fold test in palaeomagnetism, Geophys. J. Roy. Astron. Soc., 67, 53 – 58.en_US
dc.identifier.citedreferenceMcFadden, P.L. & McElhinny, M.W., 1988. The combined analysis of remagnetization circles and direct observations in palaeomagnetism, Earth planet. Sci. Lett., 87, 161 – 172.en_US
dc.identifier.citedreferenceMerrill, R.T., McElhinny, M.W. & McFadden, P.L., 1996. The Magnetic Field of the Earth, Acad. Press, San Diego, 527 p.en_US
dc.identifier.citedreferenceMolostovsky, E.A., 2005. Magnetostratigraphic correlation of marine and continental Late Permian formations, Stratigr. Geol. Correlat., 13 ( 1 ), 56 – 65.en_US
dc.identifier.citedreferenceMolostovsky, E.A. & Khramov, A.N., 1997. Magnetostratigraphy and its Significance for Geology, Saratov University, Saratov, 177 p. ( in Russian ).en_US
dc.identifier.citedreferenceMundil, R., Ludwig, K.R., Metcalfe, I. & Renne, P.R., 2004. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons, Science, 305, 1760 – 1763.en_US
dc.identifier.citedreferenceMuttoni, G., Kent, D.V., Garzanti, E., Brack, P., Abrahamsen, N. & Gaetani, M., 2003. Early Permian Pangea ‘B’ to Late Permian Pangea ‘A’, Earth planet. Sci. Lett., 215, 379 – 394.en_US
dc.identifier.citedreferenceNatal'in, B.A. & SengÖr, A.M.C., 2005. Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: the pre-history of the palaeo-Tethyan closure, Tectonophysics, 404, 175 – 202.en_US
dc.identifier.citedreferencePalmer, A.R., 1983. The decade of North American geology (DNAG) 1983 geologic time scale, Geology, 11, 503 – 504.en_US
dc.identifier.citedreferencePalmer, A.R. & Geissman, J.W., 1999. Geologic Time Scale 1999, Geological Society of America, Boulder.en_US
dc.identifier.citedreferencePavlov, V.E., Courtillot, V., Bazhenov, M.L. & Veselovsky, R.V., 2007. Paleomagnetism of the Siberian traps: new data and a new overall 250 Ma pole for Siberia, Tectonophysics, 443, 72 – 92.en_US
dc.identifier.citedreferencePiper, J.D.A., Moore, J.K., Tatar, O., Gursoy, H. & Park, R.G., 1996. Palaeomagnetic study of crustal deformation across an intracontinental transform: the North Anatolian Fault Zone in Northern Turkey, in Palaeomagnetism and Tectonics of the Mediterranean Region, Vol. 105, pp. 299 – 310, eds Morris, A. & Tarling, D.H., Geol. Soc. Special Publ.en_US
dc.identifier.citedreferencePisarevsky, S.A., Gladkochub, D.P. & Donskaya, T.A., De Waele, B. & Mazukabzov, A.M., 2006. Palaeomagnetism and geochronology of mafic dykes in south Siberia, Russia: the first precisely dated Early Permian palaeomagnetic pole from the Siberian craton, Geophys. J. Int., 167, 649 – 658.en_US
dc.identifier.citedreferencePlyusnin, K.P., 1971. The methods of studying tectonic structures of fold belts, Perm, Nauka, 217 p. ( in Russian ).en_US
dc.identifier.citedreferencePuchkov, V.N., 2000. Paleogeodynamics of the Southern and Middle Urals, Dauria, Ufa, 146 p. ( in Russian ).en_US
dc.identifier.citedreferenceRenne, P.R. & Basu, A.R., 1991. Rapid eruption of the Siberian traps flood basalts at the Permo-Triassic boundary, Science, 253, 176 – 179.en_US
dc.identifier.citedreferenceRochette, P. & Vandamme, D., 1993 Pangea B: an artifact of incorrect paleomagnetic assumptions? Annali di Geofisica, 44, 649 – 658.en_US
dc.identifier.citedreferenceShatsillo, A.V., Shipunov, S.V., Orlov, S.Y., Zharkov, I.Y. & Bazhenov, M.L., 2006. New paleomagnetic data for the Tatarian stage of the Russian platform, in Paleomagnetism and Rock Magnetism, pp. 171 – 177, ed. Gapeev, A.K., Moscow, GEOS ( in Russian ).en_US
dc.identifier.citedreferenceShipunov, S.V., 1998. Folding history of the Polar Urals on paleomagnetic data, in Paleomagnetism and Rock Magnetism: Theory, Practice and Data, pp. 69 – 71, Acad. Sci. Russ., Moscow ( in Russian ).en_US
dc.identifier.citedreferenceStamatakos, J., Lessard, A.M., van der Pluijm, B.A. & Vander Voo, R., 1995. Paleomagnetism and magnetic fabrics from the Springdale and Wigwam redbeds of Newfoundland and their implications for the Silurian paleolatitude controversy, Earth planet. Sci. Lett., 132, 141 – 155.en_US
dc.identifier.citedreferenceTan, X.D., Kodama, K.P., Chen, H., Fang, D., Sun, D. & Li, Y., 2003. Paleomagnetism and magnetic anisotropy of Cretaceous red beds from the Tarim basin, northwest China: evidence for a rock magnetic cause of anomalously shallow paleomagnetic inclinations from central Asia, J. geophys. Res., 108 ( B2 ), 2107, doi :.en_US
dc.identifier.citedreferenceTan, X.D., Kodama, K.P., Gilder, S. & Courtillot, V., 2007. Rock magnetic evidence for inclination shallowing in the Passaic Formation red beds from the Newark basin and a systematic bias of the Late Triassic apparent polar wander path for North America, Earth planet. Sci. Lett., 254, 345 – 357.en_US
dc.identifier.citedreferenceTatar, O., Gursoy, H. & Piper, J.D.A., 2002. Differential neotectonic rotations in Anatolia and in Tauride Arc: Paleomagnetic investigation of the Erenlerdag Volcanic complex and Isparta volcanic district, south-central Turkey, J. Geol. Soc. London, 159, 281 – 294.en_US
dc.identifier.citedreferenceTauxe, L., 2005. Inclination flattening and the geocentric axial dipole hypothesis, Earth planet. Sci. Lett., 233, 247 – 261.en_US
dc.identifier.citedreferenceTauxe, L. & Kent, D.V., 2004 A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: was the ancient magnetic field dipolar? in Timescales of the Paleomagnetic Field, Vol. 135, pp. 101 – 116, eds Channell, J.E.T., Kent, D.V., Lowrie, W. & Meert, J.G., AGU Geophys. Monogr.en_US
dc.identifier.citedreferenceTorsvik, T.H., Van der Voo, R., Meert, J.G., Mosar, J. & Walderhaug, H.J., 2001. Reconstruction of the continents around the North Atlantic at about the 60 th parallel, Earth planet. Sci. Lett., 187, 55 – 69.en_US
dc.identifier.citedreferenceVan der Voo, R. & Torsvik, T.H., 2001. Evidence for late Paleozoic and Mesozoic non-dipole fields provides an explanation for the Pangea reconstruction problems, Earth planet. Sci. Lett., 187, 71 – 81.en_US
dc.identifier.citedreferenceVan der Voo, R. & Torsvik, T.H., 2004. The quality of the European Permo-Triassic paleopoles and its impact on Pangea reconstructions, in Timescales of the Paleomagnetic Field, Vol. 135, pp. 29 – 42, eds Channell, J.E.T., Kent, D.V., Lowrie, W. & Meert, J.G., AGU Geophys. Monogr..en_US
dc.identifier.citedreferenceVan der Voo, R., Levashova, N.M., Skrinnik, L.S., Kara, T.V. & Bazhenov, M.L., 2006. Late orogenic, large-scale rotations in the Tien Shan and adjacent mobile belts in Kyrgyzstan and Kazakhstan, Tectonophysics, 426, 335 – 360.en_US
dc.identifier.citedreferenceVeselovsky, R.V. & Pavlov, V.E., 2006. New paleomagnetic data for the Permian-Triassic Trap rocks of Siberia and the problem of a non-dipole geomagnetic field at the Paleozoic-Mesozoic boundary, Russ. J. Earth Sci., 8, ES1002, doi :.en_US
dc.identifier.citedreferenceVlag, P., Vandamme, D., Rochette, P. & Spinelli, C., 1997. Paleomagnetism of the Esterel rocks: a revisit 22 years after the thesis of Hans Zijderveld, Geol. Mijnbouw, 76, 21 – 33.en_US
dc.identifier.citedreferenceWindley, B.P., Alexeiev, D.V., Xiao, W., KrÖner, A. & Badarch, G., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt, J. Geol. Soc. London, 164, 31 – 47.en_US
dc.identifier.citedreferenceZijderveld, J.D.A., 1967. AC demagnetization of rocks: analysis of results, in Methods in Paleomagnetism, pp. 254 – 286, eds Collinson, D.W., Creer, K.M. & Runcorn, S.K., Elsevier, Amsterdam.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.