Show simple item record

Intracellular innate resistance to bacterial pathogens

dc.contributor.authorRadtke, Andrea Lynnen_US
dc.contributor.authorO'Riordan, Mary X. D.en_US
dc.date.accessioned2010-06-01T18:43:06Z
dc.date.available2010-06-01T18:43:06Z
dc.date.issued2006-11en_US
dc.identifier.citationRadtke, Andrea L.; O'Riordan, Mary X. D. (2006). "Intracellular innate resistance to bacterial pathogens." Cellular Microbiology 8(11): 1720-1729. <http://hdl.handle.net/2027.42/71916>en_US
dc.identifier.issn1462-5814en_US
dc.identifier.issn1462-5822en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71916
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16939532&dopt=citationen_US
dc.description.abstractMammalian innate immunity stimulates antigen-specific immune responses and acts to control infection prior to the onset of adaptive immunity. Some bacterial pathogens replicate within the host cell and are therefore sheltered from some protective aspects of innate immunity such as complement. Here we focus on mechanisms of innate intracellular resistance encountered by bacterial pathogens and how some bacteria can evade destruction by the innate immune system. Major strategies of intracellular antibacterial defence include pathogen compartmentalization and iron limitation. Compartmentalization of pathogens within the host endocytic pathway is critical for generating high local concentrations of antimicrobial molecules, such as reactive oxygen species, and regulating concentrations of divalent cations that are essential for microbial growth. Cytosolic sensing, autophagy, sequestration of essential nutrients and membrane attack by antimicrobial peptides are also discussed.en_US
dc.format.extent232976 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2006 The Authors; Journal compilation © 2006 Blackwell Publishing Ltden_US
dc.titleIntracellular innate resistance to bacterial pathogensen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid16939532en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71916/1/j.1462-5822.2006.00795.x.pdf
dc.identifier.doi10.1111/j.1462-5822.2006.00795.xen_US
dc.identifier.sourceCellular Microbiologyen_US
dc.identifier.citedreferenceAmer, A.O., and Swanson, M.S. ( 2005 ) Autophagy is an immediate macrophage response to Legionella pneumophila. Cell Microbiol 7: 765 – 778.en_US
dc.identifier.citedreferenceAndrews, H.L., Vogel, J.P., and Isberg, R.R. ( 1998 ) Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway. Infect Immun 66: 950 – 958.en_US
dc.identifier.citedreferenceBaehner, R.L., and Nathan, D.G. ( 1967 ) Leukocyte oxidase: defective activity in chronic granulomatous disease. Science 155: 835 – 836.en_US
dc.identifier.citedreferenceBeatty, W.L., Belanger, T.A., Desai, A.A., Morrison, R.P., and Byrne, G.I. ( 1994 ) Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect Immun 62: 3705 – 3711.en_US
dc.identifier.citedreferenceBeiter, K., Wartha, F., Albiger, B., Normark, S., Zychlinsky, A., and Henriques-Normark, B. ( 2006 ) An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol 16: 401 – 407.en_US
dc.identifier.citedreferenceBeutler, B., Jiang, Z., Georgel, P., Crozat, K., Croker, B., Rutschmann, S., et al. ( 2006 ) Genetic analysis of host resistance: toll-like receptor signaling and immunity at large. Annu Rev Immunol 24: 353 – 389.en_US
dc.identifier.citedreferenceBidani, A., Reisner, B.S., Haque, A.K., Wen, J., Helmer, R.E., Tuazon, D.M., and Heming, T.A. ( 2000 ) Bactericidal activity of alveolar macrophages is suppressed by V-ATPase inhibition. Lung 178: 91 – 104.en_US
dc.identifier.citedreferenceBirmingham, C.L., Smith, A.C., Bakowski, M.A., Yoshimori, T., and Brumell, J.H. ( 2006 ) Autophagy controls salmonella infection in response to damage to the salmonella-containing vacuole. J Biol Chem 281: 11374 – 11383.en_US
dc.identifier.citedreferenceBloch, D.B., Nakajima, A., Gulick, T., Chiche, J.D., Orth, D., de La Monte, S.M., and Bloch, K.D. ( 2000 ) Sp110 localizes to the PML-Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Mol Cell Biol 20: 6138 – 6146.en_US
dc.identifier.citedreferenceBoyer, E., Bergevin, I., Malo, D., Gros, P., and Cellier, M.F. ( 2002 ) Acquisition of Mn (II) in addition to Fe (II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect Immun 70: 6032 – 6042.en_US
dc.identifier.citedreferenceBrinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., et al. ( 2004 ) Neutrophil extracellular traps kill bacteria. Science 303: 1532 – 1535.en_US
dc.identifier.citedreferenceBuchanan, J.T., Simpson, A.J., Aziz, R.K., Liu, G.Y., Kristian, S.A., Kotb, M., et al. ( 2006 ) DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 16: 396 – 400.en_US
dc.identifier.citedreferenceByrd, T.F., and Horwitz, M.A. ( 1989 ) Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. J Clin Invest 83: 1457 – 1465.en_US
dc.identifier.citedreferenceByrd, T.F., and Horwitz, M.A. ( 1991 ) Lactoferrin inhibits or promotes Legionella pneumophila intracellular multiplication in nonactivated and interferon gamma-activated human monocytes depending upon its degree of iron saturation. Iron-lactoferrin and nonphysiologic iron chelates reverse monocyte activation against Legionella pneumophila. J Clin Invest 88: 1103 – 1112.en_US
dc.identifier.citedreferenceByrd, T.F., and Horwitz, M.A. ( 1993 ) Regulation of transferrin receptor expression and ferritin content in human mononuclear phagocytes. Coordinate upregulation by iron transferrin and downregulation by interferon gamma. J Clin Invest 91: 969 – 976.en_US
dc.identifier.citedreferencedel Cerro-Vadillo, E., Madrazo-Toca, F., Carrasco-Marin, E., Fernandez-Prieto, L., Beck, C., Leyva-Cobian, F., et al. ( 2006 ) Cutting edge: a novel nonoxidative phagosomal mechanism exerted by cathepsin-D controls Listeria monocytogenes intracellular growth. J Immunol 176: 1321 – 1325.en_US
dc.identifier.citedreferenceChakravortty, D., and Hensel, M. ( 2003 ) Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect 5: 621 – 627.en_US
dc.identifier.citedreferenceChatterjee, S.S., Hossain, H., Otten, S., Kuenne, C., Kuchmina, K., Machata, S., et al. ( 2006 ) Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 74: 1323 – 1338.en_US
dc.identifier.citedreferenceChen, X., Niyonsaba, F., Ushio, H., Okuda, D., Nagaoka, I., Ikeda, S., et al. ( 2005 ) Synergistic effect of antibacterial agents human beta-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J Dermatol Sci 40: 123 – 132.en_US
dc.identifier.citedreferenceChlosta, S., Fishman, D.S., Harrington, L., Johnson, E.E., Knutson, M.D., Wessling-Resnick, M., and Cherayil, B.J. ( 2006 ) The iron efflux protein ferroportin regulates the intracellular growth of Salmonella enterica. Infect Immun 74: 3065 – 3067.en_US
dc.identifier.citedreferenceCole, A.M., Thapa, D.R., Gabayan, V., Liao, H.I., Liu, L., and Ganz, T. ( 2005 ) Decreased clearance of Pseudomonas aeruginosa from airways of mice deficient in lysozyme M. J Leukoc Biol 78: 1081 – 1085.en_US
dc.identifier.citedreferenceDe Voss, J.J., Rutter, K., Schroeder, B.G., Su, H., Zhu, Y., Barry, C.E., 3rd. ( 2000 ) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci USA 97: 1252 – 1257.en_US
dc.identifier.citedreferenceDeretic, V. ( 2005 ) Autophagy in innate and adaptive immunity. Trends Immunol 26: 523 – 528.en_US
dc.identifier.citedreferenceDiez, E., Lee, S.H., Gauthier, S., Yaraghi, Z., Tremblay, M., Vidal, S., and Gros, P. ( 2003 ) Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33: 55 – 60.en_US
dc.identifier.citedreferenceErnst, R.K., Guina, T., and Miller, S.I. ( 2001 ) Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect 3: 1327 – 1334.en_US
dc.identifier.citedreferenceFaurschou, M., and Borregaard, N. ( 2003 ) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5: 1317 – 1327.en_US
dc.identifier.citedreferenceFeng, Y., Huang, N., Wu, Q., and Wang, B. ( 2005 ) HMGN2: a novel antimicrobial effector molecule of human mononuclear leukocytes? J Leukoc Biol 78: 1136 – 1141.en_US
dc.identifier.citedreferenceFischbach, M.A., Lin, H., Liu, D.R., and Walsh, C.T. ( 2006 ) How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat Chem Biol 2: 132 – 138.en_US
dc.identifier.citedreferenceFlo, T.H., Smith, K.D., Sato, S., Rodriguez, D.J., Holmes, M.A., Strong, R.K., et al. ( 2004 ) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432: 917 – 921.en_US
dc.identifier.citedreferenceFlynn, J.L., and Chan, J. ( 2003 ) Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr Opin Immunol 15: 450 – 455.en_US
dc.identifier.citedreferenceForbes, J.R., and Gros, P. ( 2003 ) Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102: 1884 – 1892.en_US
dc.identifier.citedreferenceGaillard, J.L., Berche, P., Mounier, J., Richard, S., and Sansonetti, P. ( 1987 ) In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun 55: 2822 – 2829.en_US
dc.identifier.citedreferenceGallo, R.L., Kim, K.J., Bernfield, M., Kozak, C.A., Zanetti, M., Merluzzi, L., and Gennaro, R. ( 1997 ) Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem 272: 13088 – 13093.en_US
dc.identifier.citedreferenceGanz, T., Gabayan, V., Liao, H.I., Liu, L., Oren, A., Graf, T., and Cole, A.M. ( 2003 ) Increased inflammation in lysozyme M-deficient mice in response to Micrococcus luteus and its peptidoglycan. Blood 101: 2388 – 2392.en_US
dc.identifier.citedreferenceGutierrez, M.G., Master, S.S., Singh, S.B., Taylor, G.A., Colombo, M.I., and Deretic, V. ( 2004 ) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119: 753 – 766.en_US
dc.identifier.citedreferenceGutierrez, M.G., Vazquez, C.L., Munafo, D.B., Zoppino, F.C., Beron, W., Rabinovitch, M., and Colombo, M.I. ( 2005 ) Autophagy induction favours the generation and maturation of the Coxiella -replicative vacuoles. Cell Microbiol 7: 981 – 993.en_US
dc.identifier.citedreferenceHackstadt, T., Fischer, E.R., Scidmore, M.A., Rockey, D.D., and Heinzen, R.A. ( 1997 ) Origins and functions of the chlamydial inclusion. Trends Microbiol 5: 288 – 293.en_US
dc.identifier.citedreferenceHenry, R., Shaughnessy, L., Loessner, M.J., Alberti-Segui, C., Higgins, D.E., and Swanson, J.A. ( 2006 ) Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes. Cell Microbiol 8: 107 – 119.en_US
dc.identifier.citedreferenceHiemstra, P.S., van den Barselaar, M.T., Roest, M., Nibbering, P.H., and van Furth, R. ( 1999 ) Ubiquicidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages. J Leukoc Biol 66: 423 – 428.en_US
dc.identifier.citedreferenceHigh, N., Mounier, J., Prevost, M.C., and Sansonetti, P.J. ( 1992 ) IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole. EMBO J 11: 1991 – 1999.en_US
dc.identifier.citedreferenceHirsch, J.G. ( 1958 ) Bactericidal action of histone. J Exp Med 108: 925 – 944.en_US
dc.identifier.citedreferenceHolden, D.W. ( 2002 ) Trafficking of the Salmonella vacuole in macrophages. Traffic 3: 161 – 169.en_US
dc.identifier.citedreferenceHowe, D., and Mallavia, L.P. ( 1999 ) Coxiella burnetii infection increases transferrin receptors on J774A. 1 cells. Infect Immun 67: 3236 – 3241.en_US
dc.identifier.citedreferenceInohara, C., McDonald, C., and Nunez, G. ( 2005 ) NOD-LRR proteins: role in host–microbial interactions and inflammatory disease. Annu Rev Biochem 74: 355 – 383.en_US
dc.identifier.citedreferenceJabado, N., Jankowski, A., Dougaparsad, S., Picard, V., Grinstein, S., and Gros, P. ( 2000 ) Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J Exp Med 192: 1237 – 1248.en_US
dc.identifier.citedreferenceJansen, A., and Yu, J. ( 2006 ) Differential gene expression of pathogens inside infected hosts. Curr Opin Microbiol 9: 138 – 142.en_US
dc.identifier.citedreferenceJoseph, S.B., Bradley, M.N., Castrillo, A., Bruhn, K.W., Mak, P.A., Pei, L., et al. ( 2004 ) LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119: 299 – 309.en_US
dc.identifier.citedreferenceKieffer, A.E., Goumon, Y., Ruh, O., Chasserot-Golaz, S., Nullans, G., Gasnier, C., et al. ( 2003 ) The N- and C-terminal fragments of ubiquitin are important for the antimicrobial activities. FASEB J 17: 776 – 778.en_US
dc.identifier.citedreferenceLenz, L.L., Mohammadi, S., Geissler, A., and Portnoy, D.A. ( 2003 ) SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci USA 100: 12432 – 12437.en_US
dc.identifier.citedreferenceLindmo, K., and Stenmark, H. ( 2006 ) Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 119: 605 – 614.en_US
dc.identifier.citedreferenceLiu, P.T., Stenger, S., Li, H., Wenzel, L., Tan, B.H., Krutzik, S.R., et al. ( 2006 ) Toll-like receptor triggering of a vitamin d-mediated human antimicrobial response. Science 311: 1770 – 1773.en_US
dc.identifier.citedreferenceLuzio, J.P., Poupon, V., Lindsay, M.R., Mullock, B.M., Piper, R.C., and Pryor, P.R. ( 2003 ) Membrane dynamics and the biogenesis of lysosomes. Mol Membr Biol 20: 141 – 154.en_US
dc.identifier.citedreferenceMacMicking, J.D., Taylor, G.A., and McKinney, J.D. ( 2003 ) Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302: 654 – 659.en_US
dc.identifier.citedreferenceMellman, I., Fuchs, R., and Helenius, A. ( 1986 ) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55: 663 – 700.en_US
dc.identifier.citedreferenceMellor, A.L., and Munn, D.H. ( 2004 ) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4: 762 – 774.en_US
dc.identifier.citedreferenceMiyauchi, J., Sasadaira, H., Watanabe, K., and Watanabe, Y. ( 1985 ) Ultrastructural immunocytochemical localization of lysozyme in human monocytes and macrophages. Cell Tissue Res 242: 269 – 277.en_US
dc.identifier.citedreferenceMolofsky, A.B., Byrne, B.G., Whitfield, N.N., Madigan, C.A., Fuse, E.T., Tateda, K., and Swanson, M.S. ( 2006 ) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203: 1093 – 1104.en_US
dc.identifier.citedreferenceMukherjee, K., Parashuraman, S., Krishnamurthy, G., Majumdar, J., Yadav, A., Kumar, R., et al. ( 2002 ) Diverting intracellular trafficking of Salmonella to the lysosome through activation of the late endocytic Rab7 by intracellular delivery of muramyl dipeptide. J Cell Sci 115: 3693 – 3701.en_US
dc.identifier.citedreferenceMunz, C. ( 2006 ) Autophagy and antigen presentation. Cell Microbiol 8: 891 – 898.en_US
dc.identifier.citedreferenceMyers, J.T., Tsang, A.W., and Swanson, J.A. ( 2003 ) Localized reactive oxygen and nitrogen intermediates inhibit escape of Listeria monocytogenes from vacuoles in activated macrophages. J Immunol 171: 5447 – 5453.en_US
dc.identifier.citedreferenceNakagawa, I., Amano, A., Mizushima, N., Yamamoto, A., Yamaguchi, H., Kamimoto, T., et al. ( 2004 ) Autophagy defends cells against invading group A Streptococcus. Science 306: 1037 – 1040.en_US
dc.identifier.citedreferenceNash, J.A., Ballard, T.N., Weaver, T.E., and Akinbi, H.T. ( 2006 ) The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity in vivo. J Immunol 177: 519 – 526.en_US
dc.identifier.citedreferenceNathan, C. ( 2006 ) Role of iNOS in human host defense. Science 312: 1874 – 1875; author reply 1874–1875.en_US
dc.identifier.citedreferenceNauseef, W.M. ( 2004 ) Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 122: 277 – 291.en_US
dc.identifier.citedreferenceOgawa, M., Yoshimori, T., Suzuki, T., Sagara, H., Mizushima, N., and Sasakawa, C. ( 2005 ) Escape of intracellular Shigella from autophagy. Science 307: 727 – 731.en_US
dc.identifier.citedreferencePan, H., Yan, B.S., Rojas, M., Shebzukhov, Y.V., Zhou, H., Kobzik, L., et al. ( 2005 ) Ipr1 gene mediates innate immunity to tuberculosis. Nature 434: 767 – 772.en_US
dc.identifier.citedreferencePapp-Wallace, K.M., and Maguire, M.E. ( 2006 ) Manganese transport and the role of manganese in virulence. Annu Rev Microbiol 60, in press. doi: 10.1146/annurev.micro.60.080805.142149.en_US
dc.identifier.citedreferenceParent, M.A., Bellaire, B.H., Murphy, E.A., Roop, R.M., 2nd, Elzer, P.H., and Baldwin, C.L. ( 2002 ) Brucella abortus siderophore 2,3-dihydroxybenzoic acid (DHBA) facilitates intracellular survival of the bacteria. Microb Pathog 32: 239 – 248.en_US
dc.identifier.citedreferencePeyssonnaux, C., Zinkernagel, A.S., Datta, V., Lauth, X., Johnson, R.S., and Nizet, V. ( 2006 ) TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood 107: 3727 – 3732.en_US
dc.identifier.citedreferenceRadons, J., Biewusch, U., Grassel, S., Geuze, H.J., and Hasilik, A. ( 1994 ) Distinctive inhibition of the lysosomal targeting of lysozyme and cathepsin D by drugs affecting pH gradients and protein kinase C. Biochem J 302: 581 – 586.en_US
dc.identifier.citedreferenceRaoult, D., Drancourt, M., and Vestris, G. ( 1990 ) Bactericidal effect of doxycycline associated with lysosomotropic agents on Coxiella burnetii in P388D1 cells. Antimicrob Agents Chemother 34: 1512 – 1514.en_US
dc.identifier.citedreferenceRen, T., Zamboni, D.S., Roy, C.R., Dietrich, W.F., and Vance, R.E. ( 2006 ) Flagellin-deficient legionella mutants evade Caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2: e18.en_US
dc.identifier.citedreferenceRich, K.A., Burkett, C., and Webster, P. ( 2003 ) Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 5: 455 – 468.en_US
dc.identifier.citedreferenceRivera-Marrero, C.A., Stewart, J., Shafer, W.M., and Roman, J. ( 2004 ) The down-regulation of cathepsin G in THP-1 monocytes after infection with Mycobacterium tuberculosis is associated with increased intracellular survival of bacilli. Infect Immun 72: 5712 – 5721.en_US
dc.identifier.citedreferenceRosenberger, C.M., and Finlay, B.B. ( 2002 ) Macrophages inhibit Salmonella typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J Biol Chem 277: 18753 – 18762.en_US
dc.identifier.citedreferenceRosenberger, C.M., Gallo, R.L., and Finlay, B.B. ( 2004 ) Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci USA 101: 2422 – 2427.en_US
dc.identifier.citedreferenceSarrias, M.R., Rosello, S., Sanchez-Barbero, F., Sierra, J.M., Vila, J., Yelamos, J., et al. ( 2005 ) A role for human Sp alpha as a pattern recognition receptor. J Biol Chem 280: 35391 – 35398.en_US
dc.identifier.citedreferenceShafer, W.M., Hubalek, F., Huang, M., and Pohl, J. ( 1996 ) Bactericidal activity of a synthetic peptide (CG 117–136) of human lysosomal cathepsin G is dependent on arginine content. Infect Immun 64: 4842 – 4845.en_US
dc.identifier.citedreferenceShiloh, M.U., MacMicking, J.D., Nicholson, S., Brause, J.E., Potter, S., Marino, M., et al. ( 1999 ) Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10: 29 – 38.en_US
dc.identifier.citedreferenceShintani, T., and Klionsky, D.J. ( 2004 ) Autophagy in health and disease: a double-edged sword. Science 306: 990 – 995.en_US
dc.identifier.citedreferenceStrober, W., Murray, P.J., Kitani, A., and Watanabe, T. ( 2006 ) Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 6: 9 – 20.en_US
dc.identifier.citedreferenceThomas, S.M., Garrity, L.F., Brandt, C.R., Schobert, C.S., Feng, G.S., Taylor, M.W., et al. ( 1993 ) IFN-gamma-mediated antimicrobial response. Indoleamine 2,3-dioxygenase-deficient mutant host cells no longer inhibit intracellular Chlamydia spp. or Toxoplasma growth. J Immunol 150: 5529 – 5534.en_US
dc.identifier.citedreferenceTilney, L.G., and Portnoy, D.A. ( 1989 ) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109: 1597 – 1608.en_US
dc.identifier.citedreferenceTosh, K., Campbell, S.J., Fielding, K., Sillah, J., Bah, B., Gustafson, P., et al. ( 2006 ) Variants in the SP110 gene are associated with genetic susceptibility to tuberculosis in West Africa. Proc Natl Acad Sci USA 103: 10364 – 10368.en_US
dc.identifier.citedreferenceVazquez-Torres, A., Xu, Y., Jones-Carson, J., Holden, D.W., Lucia, S.M., Dinauer, M.C., et al. ( 2000 ) Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287: 1655 – 1658.en_US
dc.identifier.citedreferenceWiater, L.A., Dunn, K., Maxfield, F.R., and Shuman, H.A. ( 1998 ) Early events in phagosome establishment are required for intracellular survival of Legionella pneumophila. Infect Immun 66: 4450 – 4460.en_US
dc.identifier.citedreferenceWright, E.K., Goodart, S.A., Growney, J.D., Hadinoto, V., Endrizzi, M.G., Long, E.M., et al. ( 2003 ) Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr Biol 13: 27 – 36.en_US
dc.identifier.citedreferenceYan, H., and Hancock, R.E. ( 2001 ) Synergistic interactions between mammalian antimicrobial defense peptides. Antimicrob Agents Chemother 45: 1558 – 1560.en_US
dc.identifier.citedreferenceYang, D., Biragyn, A., Hoover, D.M., Lubkowski, J., and Oppenheim, J.J. ( 2004 ) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22: 181 – 215.en_US
dc.identifier.citedreferenceZamboni, D.S., Kobayashi, K.S., Kohlsdorf, T., Ogura, Y., Long, E.M., Vance, R.E., et al. ( 2006 ) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7: 318 – 325.en_US
dc.identifier.citedreferenceZlatanova, J.S., Srebreva, L.N., Banchev, T.B., Tasheva, B.T., and Tsanev, R.G. ( 1990 ) Cytoplasmic pool of histone H1 in mammalian cells. J Cell Sci 96: 461 – 468.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.