Show simple item record

Elevated atmospheric CO 2 affects soil microbial diversity associated with trembling aspen

dc.contributor.authorLesaulnier, Celineen_US
dc.contributor.authorPapamichail, Dimitrisen_US
dc.contributor.authorMcCorkle, Seanen_US
dc.contributor.authorOllivier, Bernarden_US
dc.contributor.authorSkiena, Stevenen_US
dc.contributor.authorTaghavi, Safiyhen_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorvan der Lelie, Danielen_US
dc.date.accessioned2010-06-01T18:43:13Z
dc.date.available2010-06-01T18:43:13Z
dc.date.issued2008-04en_US
dc.identifier.citationLesaulnier, Celine; Papamichail, Dimitris; McCorkle, Sean; Ollivier, Bernard; Skiena, Steven; Taghavi, Safiyh; Zak, Donald; van der Lelie, Daniel (2008). "Elevated atmospheric CO 2 affects soil microbial diversity associated with trembling aspen." Environmental Microbiology 10(4): 926-941. <http://hdl.handle.net/2027.42/71918>en_US
dc.identifier.issn1462-2912en_US
dc.identifier.issn1462-2920en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71918
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18218029&dopt=citationen_US
dc.description.abstractThe effects of elevated atmospheric CO 2 (560 p.p.m.) and subsequent plant responses on the soil microbial community composition associated with trembling aspen was assessed through the classification of 6996 complete ribosomal DNA sequences amplified from the Rhinelander WI free-air CO 2 and O 3 enrichment (FACE) experiments microbial community metagenome. This in-depth comparative analysis provides an unprecedented, detailed and deep branching profile of population changes incurred as a response to this environmental perturbation. Total bacterial and eukaryotic abundance does not change; however, an increase in heterotrophic decomposers and ectomycorrhizal fungi is observed. Nitrate reducers of the domain bacteria and archaea, of the phylum Crenarchaea , potentially implicated in ammonium oxidation, significantly decreased with elevated CO 2 . These changes in soil biota are evidence for altered interactions between trembling aspen and the microorganisms in its surrounding soil, and support the theory that greater plant detritus production under elevated CO 2 significantly alters soil microbial community composition.en_US
dc.format.extent353815 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd; No claim to original US government worksen_US
dc.titleElevated atmospheric CO 2 affects soil microbial diversity associated with trembling aspenen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.en_US
dc.contributor.affiliationotherBrookhaven National Laboratory, Biology Department, Building 463, Upton, New York 11973-5000, USA.en_US
dc.contributor.affiliationotherIRD, UMR 180, IFR-BAIM, UniversitÉ de Provence et de la MÉditerranÉe, ESIL, F-13288, Marseille Cedex 09, France.en_US
dc.contributor.affiliationotherComputer Science Department, SUNY at Stony Brook, Stony Brook, New York 11794, USA.en_US
dc.contributor.affiliationotherDepartment of Computer Science, University of Miami, PO Box 248154, Coral Gables, FL 33124-4245, USA.en_US
dc.identifier.pmid18218029en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71918/1/j.1462-2920.2007.01512.x.pdf
dc.identifier.doi10.1111/j.1462-2920.2007.01512.xen_US
dc.identifier.sourceEnvironmental Microbiologyen_US
dc.identifier.citedreferenceAltschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. ( 1997 ) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389 – 3402.en_US
dc.identifier.citedreferenceBarns, S.M., Takala, S.L., and Kuske, C.R. ( 1999 ) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65: 1731 – 1737.en_US
dc.identifier.citedreferenceBegon, M., Harper, J.L., and Townsend, C.R. ( 1996 ) Ecology: Individuals, Populations, and Communities. Cambridge, MA, USA: Blackwell Publishing Ltden_US
dc.identifier.citedreferenceBenson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A., and Wheeler, D.L. ( 2002 ) GenBank. Nucleic Acids Res 30: 17 – 20.en_US
dc.identifier.citedreferenceBlackwood, C.B., Oaks, A., and Buyer, J.S. ( 2005 ) Phylum- and class-specific PCR primers for general microbial community analysis. Appl Environ Microbiol 71: 6193 – 6198.en_US
dc.identifier.citedreferenceBuckley, D.H., and Schmidt, T.M. ( 2001 ) Environmental factors influencing the distribution of rRNA from Verrucomicrobia in soil. FEMS Microbiol Ecol 35: 105 – 112.en_US
dc.identifier.citedreferenceCarreiro, M.M., and Koske, R.E. ( 1992 ) Room temperature isolations can bias against selection of low temperature microfungi in temperate forest soils. Mycologia 84: 886 – 900.en_US
dc.identifier.citedreferenceCeulemans, R., and Mousseau, M. ( 1994 ) Tansley review, 71: effects of elevated CO 2 on woody plants. New Phytol 127: 425 – 446.en_US
dc.identifier.citedreferenceChakraborty, S., and Datta, S. ( 2003 ) How will plant pathogens adapt to host plant resistance at elevated CO 2 under a changing climate? New Phytol 159: 733.en_US
dc.identifier.citedreferenceChao, A. ( 1984 ) Nonparametric estimation of the number of classes in a population. Scand J Stat 11: 265 – 270.en_US
dc.identifier.citedreferenceChao, A. ( 1987 ) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43: 783 – 791.en_US
dc.identifier.citedreferenceChao, A., Chazdon, R.L., Colwell R.K., and Shen T.-J. ( 2005 ) A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecol Lett 8: 148 – 159.en_US
dc.identifier.citedreferenceChung, H., Zak, D.R., and Lilleskov, E.A. ( 2006 ) Fungal community composition and metabolism under elevated CO(2) and O(3). Oecologia 147: 143 – 154.en_US
dc.identifier.citedreferenceCole, J.R., Chai, B., Marsh, T.L., Farris, R.J., Wang, Q., Kulam, S.A., et al. ( 2003 ) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31: 442 – 443.en_US
dc.identifier.citedreferenceColwell, R.K. ( 2005 ) EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. User's Guide and Application. [WWW document]. URL http://purl.oclc.org/estimates.en_US
dc.identifier.citedreferenceCurtis, P.S., and Wang, X. ( 1998 ) A meta-analysis of elevated CO 2 effects on woody plant mass, form and physiology. Oecologia 113: 299 – 313.en_US
dc.identifier.citedreferenceDeLong, E.F. ( 1992 ) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89: 5685 – 5689.en_US
dc.identifier.citedreferenceDeLucia, E.H., Hamilton, J.G., Naidu, S.L., Thomas, R.B., Andrews, J.A., Finzi, A., et al. ( 1999 ) Net primary production of a forest ecosystem with experimental CO 2 enrichment. Science 284: 1177 – 1179.en_US
dc.identifier.citedreferenceDeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., et al. ( 2006 ) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069 – 5072.en_US
dc.identifier.citedreferenceDrake, B.G., GonzÀlez-Meler, M.A., and Long, S.P. ( 1997 ) More efficient plants: a consequence of rising atmospheric CO 2 ? Annu Rev Plant Physiol Plant Mol Biol 48: 609 – 639.en_US
dc.identifier.citedreferenceField, C.B. ( 1999 ) Diverse Controls on Carbon Storage Under Elevated CO 2: Toward a Synthesis. San Diego, CA, USA: Academic Press.en_US
dc.identifier.citedreferenceFisher, R.A. ( 1922 ) On the interpretation of x 2 from contingency tables, and the calculation of P. J R Stat Soc 85: 87 – 94.en_US
dc.identifier.citedreferenceGarrity, G., Bell, J.A., and Lilburn, T.G. ( 2004 ) Taxonomic Outline of the Prokaryotic Genera. Bergey's Manual of Systematic Bacteriology. New York, USA: Springer-Verlag.en_US
dc.identifier.citedreferenceGoodfellow, M., and Williams, S.T. ( 1983 ) Ecology of actinomycetes. Annu Rev Microbiol 37: 189 – 216.en_US
dc.identifier.citedreferenceHallam, S.J., Mincer, T.J., Schleper, C., Preston, C.M., Roberts, K., Richardson, P.M., and DeLong, E.F. ( 2006 ) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4: e95.en_US
dc.identifier.citedreferenceHeath, J., Ayres, E., Possell, M., Bardgett, R.D., Black, I.J., Grant, H., et al. ( 2005 ) Rising Atmospheric CO 2 reduces sequestration of root-derived soil carbon. Science 309: 1711 – 1713.en_US
dc.identifier.citedreferenceHogberg, P., Nordgren, A., Buchmann, N., Taylor, A.F., Ekblad, A., Hogberg, M.N., et al. ( 2001 ) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411: 789 – 792.en_US
dc.identifier.citedreferenceHolmes, W.E., Zak, D.R., Pregitzer, K.S., and King, J.S. ( 2003 ) Soil nitrogen transformations under populus tremuloides, Betula papyrifera and Acer saccharum following 3 years exposure to elevated CO 2 and O 3. Glob Change Biol 9: 1743 – 1750.en_US
dc.identifier.citedreferenceHu, S., Chapin, F.S., 3rd, Firestone, M.K., Field, C.B., and Chiariello, N.R. ( 2001 ) Nitrogen limitation of microbial decomposition in a grassland under elevated CO 2. Nature 409: 188 – 191.en_US
dc.identifier.citedreferenceHughes, J.B., Hellmann, J.J., Ricketts, T.H., and Bohannan, B.J. ( 2001 ) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67: 4399 – 4406.en_US
dc.identifier.citedreferenceHungate, B.A., Holland, E.A., Jackson, R.B., Chapin, F.S., III, Mooney, H.A., and Field, C.B. ( 1997 ) On the fate of carbon in grasslands under carbon dioxide enrichment. Nature 388: 576 – 579.en_US
dc.identifier.citedreferenceHungate, B.A., Jaeger, C.H., III, Gamara, G., Chapin, F.S., III, and Field, C.B. ( 2000 ) Soil microbiota in two annual grasslands: responses to elevated atmospheric CO 2. Oecologia 124: 589 – 598.en_US
dc.identifier.citedreferenceJanssen, P.H. ( 2006 ) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72: 1719 – 1728.en_US
dc.identifier.citedreferenceJones, T.H., Thompson, L.J., Lawton, J.H., Bezemer, T.M., Bardgett, R.D., Blackburn, T.M., et al. ( 1998 ) Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280: 441 – 443.en_US
dc.identifier.citedreferenceKaufman, L., and Rousseeuw, P.J. ( 1990 ) Finding Groups in Data: An Introduction to Cluster Analysis. New York, USA: Wiley.en_US
dc.identifier.citedreferenceKemp, P.F., and Aller, J.Y. ( 2004 ) Estimating prokaryotic diversity: when are 16S rDNA libraries large enough? Limnol Oceanogr Methods 2: 114 – 125.en_US
dc.identifier.citedreferenceKing, J.S., Pregitzer, K.S., Zak, D.R., Holmes, W.E., and Schmidt, K. ( 2005 ) Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO 2 and varying soil resource availability. Oecologia 146: 318 – 328.en_US
dc.identifier.citedreferenceKonneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A. ( 2005 ) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543 – 546.en_US
dc.identifier.citedreferenceLane, D.J. ( 1991 ) Nucleic Acid Techniques in Bacterial Systematics. In Stackebrandt, E., and Goodfellow, M. (eds). New York, NY, USA: John Wiley & Sons, pp. 115 – 175.en_US
dc.identifier.citedreferenceLarson, J.L., Zak, D.R., and Sinsabaughb, R.L. ( 2002 ) Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Sci Soc Am 66: 1848 – 1856.en_US
dc.identifier.citedreferencevan der Lelie, D., Lesaulnier, C., McCorkle, S., Geets, J., Taghavi, S., and Dunn, J. ( 2006 ) Use of single-point genome signature tags as a universal tagging method for microbial genome surveys. Appl Environ Microbiol 72: 2092 – 2101.en_US
dc.identifier.citedreferenceLevenshtein, V.I. ( 1965 ) Binary codes capable of correcting deletions, insertions and reversals. Dokl Akad Nauk SSSR 163: 845 – 848.en_US
dc.identifier.citedreferenceLopez-Garcia, P., Rodriguez-Valera, F., Pedros-Alio, C., and Moreira, D. ( 2001 ) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409: 603 – 607.en_US
dc.identifier.citedreferenceLozupone, C., and Knight, R. ( 2005 ) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71: 8228 – 8235.en_US
dc.identifier.citedreferenceLudwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. ( 2004 ) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363 – 1371.en_US
dc.identifier.citedreferenceLussenhop, J., Treonis, A., Curtis, P.S., Teeri, J.A., and Vogel, C.S. ( 1998 ) Response of soil biota to elevated atmospheric CO 2 in poplar model systems. Oecologia 113: 247 – 251.en_US
dc.identifier.citedreferenceLydolph, M.C., Jacobsen, J., Arctander, P., Gilbert, M.T., Gilichinsky, D.A., Hansen, A.J., et al. ( 2005 ) Beringian paleoecology inferred from permafrost-preserved fungal DNA. Appl Environ Microbiol 71: 1012 – 1017.en_US
dc.identifier.citedreferenceManz, W., Amann, R., Ludwig, W., Vancanneyt, M., and Schleifer, K.H. ( 1996 ) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142 ( Part 5 ): 1097 – 1106.en_US
dc.identifier.citedreferenceMartin, A.P. ( 2002 ) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68: 3673 – 3682.en_US
dc.identifier.citedreferenceMuyzer, G., Teske, A., Wirsen, C.O., and Jannasch, H.W. ( 1995 ) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164: 165 – 172.en_US
dc.identifier.citedreferenceOvermann, J., Coolen, M.J., and Tuschak, C. ( 1999 ) Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Arch Microbiol 172: 83 – 94.en_US
dc.identifier.citedreferencePerevalova, A.A., Lebedinskii, A.V., Bonch-Osmolovskaia, E.A., and Chernykh, N.A. ( 2003 ) [Detection of hyperthermophilic archaea of the genus Desulforococcus by hybridization with oligonucleotide probes]. Mikrobiologiia 72: 383 – 389.en_US
dc.identifier.citedreferencePhillips, R.L., Zak, D.R., Holmes, W.E., and White, D.C. ( 2002 ) Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 131: 236 – 244.en_US
dc.identifier.citedreferenceQuaiser, A., Ochsenreiter, T., Klenk, H.P., Kletzin, A., Treusch, A.H., Meurer, G., et al. ( 2002 ) First insight into the genome of an uncultivated crenarchaeote from soil. Environ Microbiol 4: 603 – 611.en_US
dc.identifier.citedreferenceReysenbach, A.-L., and Pace, N.R. ( 1995 ) Reliable amplification of hyperthermophilic archaeal 16S rRNA genes by the polymerase chain reaction. In Archaea: A Laboratory Manual – Thermophiles. Robb, F.T., and Place, A.R. (eds). Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory.en_US
dc.identifier.citedreferenceRillig, M.C., and Field, C.B. ( 2003 ) Arbuscular mycorrhizae respond to plants exposed to elevated atmospheric CO 2 as a function of soil depth. Plant Soil 254: 383 – 391.en_US
dc.identifier.citedreferenceRonn, R., Ekelund, F., and Christensen, S. ( 2003 ) Effects of elevated atmospheric CO 2 on protozoan abundance in soil planted with wheat and on decomposition of wheat roots. Plant Soil 251: 13 – 21.en_US
dc.identifier.citedreferenceSait, M., Davis, K.E., and Janssen, P.H. ( 2006 ) Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 72: 1852 – 1857.en_US
dc.identifier.citedreferenceSangwan, P., Kovac, S., Davis, K.E., Sait, M., and Janssen, P.H. ( 2005 ) Detection and cultivation of soil verrucomicrobia. Appl Environ Microbiol 71: 8402 – 8410.en_US
dc.identifier.citedreferenceSeguritan, V., and Rohwer, F. ( 2001 ) FastGroup: a program to dereplicate libraries of 16S rDNA sequences. BMC Bioinformatics 2: 9.en_US
dc.identifier.citedreferenceSimon, H.M., Jahn, C.E., Bergerud, L.T., Sliwinski, M.K., Weimer, P.J., Willis, D.K., and Goodman, R.M. ( 2005 ) Cultivation of mesophilic soil crenarchaeotes in enrichment cultures from plant roots. Appl Environ Microbiol 71: 4751 – 4760.en_US
dc.identifier.citedreferenceSimpson, E. ( 1949 ) Measurement of diversity. Nature 163: 688.en_US
dc.identifier.citedreferenceSly, L.I., Taghavi, M., and Fegan, M. ( 1999 ) Phylogenetic position of Chitinophaga pinensis in the Flexibacter-Bacteroides-Cytophaga phylum. Int J Syst Bacteriol 49 ( Part 2 ): 479 – 481.en_US
dc.identifier.citedreferenceStach, J.E., Maldonado, L.A., Ward, A.C., Goodfellow, M., and Bull, A.T. ( 2003 ) New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5: 828 – 841.en_US
dc.identifier.citedreferenceStahl, D.A., and R. Amann ( 1991 ) Development and application of nucleic acid probes. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics, pp. 205 – 248. John Wiley and Sons, Chichester, England.en_US
dc.identifier.citedreferenceStevenson, B.S., Eichorst, S.A., Wertz, J.T., Schmidt, T.M., and Breznak, J.A. ( 2004 ) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70: 4748 – 4755.en_US
dc.identifier.citedreferenceStubner, S. ( 2002 ) Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen detection. J Microbiol Methods 50: 155 – 164.en_US
dc.identifier.citedreferenceTreusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H.P., and Schleper, C. ( 2005 ) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7: 1985 – 1995.en_US
dc.identifier.citedreferenceWang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. ( 2007 ) NaÏve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261 – 5267.en_US
dc.identifier.citedreferenceWheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., et al. ( 2006 ) Database resources of the national center for biotechnology information. Nucleic Acids Res 34: D173 – D180.en_US
dc.identifier.citedreferenceWuchter, C., Abbas, B., Coolen, M.J., Herfort, L., van Bleijswijk, J., Timmers, P., et al. ( 2006 ) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103: 12317 – 12322.en_US
dc.identifier.citedreferenceZak, D.R., Pregitzer, K.S., Curtis, P.S., Teeri, J.A., Fogel, R., Randlett, D.L., and Friend, A. ( 1993 ) Elevated atmospheric CO 2 and feedback between carbon and nitrogen cycles. Plant Soil 151: 105 – 117.en_US
dc.identifier.citedreferenceZak, D.R., Pregitzer, K.S., Curtis, P.S., Vogel, C.S., Holmes, W.E., and Lussenhop, J. ( 2000 ) Atmospheric CO 2, soil-N availability, and allocation of biomass and nitrogen by Populus tremuloides. Ecol Appl 10: 34 – 46.en_US
dc.identifier.citedreferenceZavaleta, E.S., Thomas, B.D., Chiariello, N.R., Asner, G.P., Shaw, M.R., and Field, C.B. ( 2003 ) Plants reverse warming effect on ecosystem water balance. Proc Natl Acad Sci USA 100: 9892 – 9893.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.