Show simple item record

Neutral antagonist activity of naltrexone and 6β-naltrexol in naÏve and opioid-dependent C6 cells expressing a µ-opioid receptor

dc.contributor.authorDivin, Mary Falgouten_US
dc.contributor.authorBradbury, Faye A.en_US
dc.contributor.authorCarroll, F. I.en_US
dc.contributor.authorTraynor, John R.en_US
dc.date.accessioned2010-06-01T18:43:39Z
dc.date.available2010-06-01T18:43:39Z
dc.date.issued2009-04en_US
dc.identifier.citationDivin, MF; Bradbury, FA; Carroll, FI; Traynor, JR (2009). "Neutral antagonist activity of naltrexone and 6β-naltrexol in naÏve and opioid-dependent C6 cells expressing a µ-opioid receptor." British Journal of Pharmacology 156(7): 1044-1053. <http://hdl.handle.net/2027.42/71925>en_US
dc.identifier.issn0007-1188en_US
dc.identifier.issn1476-5381en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71925
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19220294&dopt=citationen_US
dc.description.abstractAdenylyl cyclase sensitization occurs on chronic agonist activation of µ-opioid receptors and is manifested by an increase in cAMP levels (overshoot) on challenge with antagonist. It has been proposed that a long lasting constitutively active receptor is formed on chronic µ-opioid exposure and that antagonists with inverse agonist activity rapidly return the receptor to a basal state causing a cAMP overshoot and a more severe withdrawal response in vivo . This hypothesis depends on an accurate characterization of neutral and inverse agonist properties of opioid antagonists. Experimental approach:  C6 glioma and HEK293 cells expressing µ-opioid receptors were used. Opioid antagonists were examined for their ability to induce a cAMP overshoot following chronic treatment with the agonist DAMGO ([D-Ala 2 ,N-Me-Phe 4 ,Glyol 5 ]-enkephalin). The compounds were also characterized as agonists, inverse agonists or neutral antagonists by using assays for competitive binding, [ 35 S]GTPγS (guanosine-5′-O-(3-[ 35 S]thio)triphosphate) binding and changes in cell surface receptor expression. Key results:  Naltrexone, 6β-naltrexol and naloxone were indistinguishable to the µ-opioid receptor in the opioid-naÏve or dependent state and acted as neutral antagonists. The δ-opioid receptor inverse agonist RTI-5989-25 [(+)- N -[ trans -4′-(2-methylphenyl)-2′-butenyl]-(3 R ,4 R )-dimethyl-4-(3-hydroxyphenyl)piperidine], a 3,4-dimethyl-4-(3-hydroxyphenyl)-piperidine, was an inverse agonist at the µ-opioid receptor, and the peptide antagonist CTAP (H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH 2 ) showed variable, assay-dependent properties. All the antagonists precipitated the same degree of cAMP overshoot in opioid-dependent cells. Conclusions and implications:  Antagonists at the µ-opioid receptor may be neutral or show inverse agonist activity. Formation of a constitutively active µ-opioid receptor is not a requirement for the development or expression of adenylyl cyclase sensitization.en_US
dc.format.extent254870 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 The British Pharmacological Societyen_US
dc.subject.otherµ-Opioid Receptoren_US
dc.subject.otherConstitutive Activityen_US
dc.subject.otherInverse Agonismen_US
dc.subject.otherProtean Agonismen_US
dc.subject.otherAdenylyl Cyclaseen_US
dc.subject.otherCAMP Overshooten_US
dc.subject.otherNaltrexoneen_US
dc.subject.other6β-Naltrexolen_US
dc.subject.otherRTI-5989-25en_US
dc.subject.otherCTAPen_US
dc.titleNeutral antagonist activity of naltrexone and 6β-naltrexol in naÏve and opioid-dependent C6 cells expressing a µ-opioid receptoren_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pharmacology, University of Michigan, Ann Arbor, MI, USA,en_US
dc.contributor.affiliationumSubstance Abuse Research Center, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherRTI International Center for Organic and Medicinal Chemistry, Research Triangle Park, NC, USA, anden_US
dc.identifier.pmid19220294en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71925/1/j.1476-5381.2008.00035.x.pdf
dc.identifier.doi10.1111/j.1476-5381.2008.00035.xen_US
dc.identifier.sourceBritish Journal of Pharmacologyen_US
dc.identifier.citedreferenceAbbruscato TJ, Thomas SA, Hruby VJ, Davis TP ( 1997 ). Blood-brain barrier permeability and bioavailability of a highly potent and mu-selective opioid antagonist, CTAP: comparison with morphine. J Pharmacol Exp Ther 280: 402 – 409.en_US
dc.identifier.citedreferenceArunlakshana O, Schild HO ( 1959 ). Some quantitative uses of drug antagonists. Br J Pharmacol Chemother 15: 48 – 58.en_US
dc.identifier.citedreferenceBagley EE, Chieng BCH, Christie MJ, Connor M ( 2005 ). Opioid tolerance in periaqueductal gray mouse neurons isolated from mice chronically treated with morphine. Br J Pharmacol 146: 68 – 76.en_US
dc.identifier.citedreferenceBilsky EJ, Bernstein RN, Wang Z, Sadee W, Porreca F ( 1996 ). Effects of naloxone and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH 2 and the protein kinase inhibitors H7 and H8 on acute morphine dependence and antinociceptive tolerance in mice. J Pharmacol Exp Ther 277: 484 – 490.en_US
dc.identifier.citedreferenceBohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG ( 2000 ). Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408: 720 – 723.en_US
dc.identifier.citedreferenceBradford MM ( 1976 ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248 – 254.en_US
dc.identifier.citedreferenceBrillet K, Kieffer KL, Massotte D ( 2003 ). Enhanced spontaneous activity of the mu opioid receptor by cysteine mutations: characterization of a tool for inverse agonist screening. BMC Pharmacol 3: 14.en_US
dc.identifier.citedreferenceBurford NT, Wang D, Sadee W ( 2000 ). G-protein coupling of µ-opioid receptors (OP3): elevated basal signaling activity. Biochem J 348: 531 – 537.en_US
dc.identifier.citedreferenceChilders SR, Fleming LM, Selley DE, McNutt RW, Chang KJ ( 1993 ). BW373U86: a nonpeptidic delta-opioid agonist with novel receptor G-protein mediated actions in rat brain membranes and neuroblastoma cells. Mol Pharmacol 44: 827 – 834.en_US
dc.identifier.citedreferenceChristie MJ ( 2008 ). Cellular adaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 154: 384 – 396.en_US
dc.identifier.citedreferenceClark MJ, Traynor JR ( 2006 ). Mediation of adenylyl cyclase sensitization by PTX-insensitive Gαo A, Gαi 1, Gαi 2 or Gαi 3. J Neurochem 99: 1494 – 1504.en_US
dc.identifier.citedreferenceClark MJ, Neubig RR, Traynor JR ( 2004 ). Endogenous regulator of G protein signaling protein suppress Go-dependent, µ-opioid agonist-mediated adenylyl cyclase supersensitization. J Pharmacol Exp Ther 310: 215 – 222.en_US
dc.identifier.citedreferenceConnor M, Borgland SL, Christie MJ ( 1999 ). Continued morphine modulation of calcium channel currents in acutely isolated locus coeruleus neurons from morphine-dependent rats. Br J Pharmacol 128: 1561 – 1569.en_US
dc.identifier.citedreferenceCosta T, Herz A ( 1989 ). Antagonists with negative intrinsic activity at δ-opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA 86: 7321 – 7325.en_US
dc.identifier.citedreferenceDivin MF, Ko MC, Traynor JR ( 2008 ). Comparison of the opioid antagonist properties of naltrexone and 6β-naltrexol in morphine-naÏve and morphine-dependent mice. Eur J Pharmacol 583: 48 – 55.en_US
dc.identifier.citedreferenceJohnson EE, Christie MJ, Connor M ( 2005 ). The role of opioid receptor phosphorylation and trafficking in adaptations to persistent opioid treatment. Neurosignals 14: 290 – 302.en_US
dc.identifier.citedreferenceKenakin T ( 2004 ). Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol Pharmacol 65: 2 – 11.en_US
dc.identifier.citedreferenceKo MC, Divin MF, Lee H, Woods JH, Traynor JR ( 2006 ). Differential in vivo potencies of naltrexone and 6β-naltrexol in the monkey. J Pharmacol Exp Ther 316: 772 – 779.en_US
dc.identifier.citedreferenceLee KO, Akil H, Woods JH, Traynor JR ( 1999 ). Differential binding properties of oripavines at cloned mu- and delta-opioid receptors. Eur J Pharmacol 378: 323 – 330.en_US
dc.identifier.citedreferenceLi J, Chen C, Huang P, Liu-Chen LY ( 2001 ). Inverse agonist up-regulates the constitutively active D3.49(164)Q mutant of the rat µ-opioid receptor by stabilizing the structure and blocking constitutive internalization and down-regulation. Mol Pharmacol 60: 1064 – 1075.en_US
dc.identifier.citedreferenceLin S, Gether U, Kobilka BK ( 1996 ). Ligand stabilization of the β2-adrenergic receptor: effect of DTT on receptor conformation monitored by circular dichroism and fluorescence spectroscopy. Biochemistry 35: 14445 – 14451.en_US
dc.identifier.citedreferenceLiu JG, Prather PL ( 2001 ). Chronic exposure to µ-opioid agonists produces constitutive activation of the µ-opioid receptors in direct proportion to the efficacy of the agonist used for pretreatment. Mol Pharmacol 60: 53 – 62.en_US
dc.identifier.citedreferenceMaldonado R, Negus S, Koob GF ( 1992 ). Precipitation of morphine withdrawal syndrome in rats by administration of mu-, delta- and kappa-selective opioid antagonists. Neuropharmacology 31: 1231 – 1241.en_US
dc.identifier.citedreferenceMilligan G ( 2003 ). Constitutive activity and inverse agonists of G protein coupled receptors: a current perspective. Mol Pharm 64: 1271 – 1276.en_US
dc.identifier.citedreferenceMiserey-Lenkei S, Parnot C, Bardin S, Corvol P, Clauser E ( 2002 ). Constitutive internalization of constitutively active angiotensin II AT1A receptor mutants is blocked by inverse agonists. J Biol Chem 277: 5891 – 5901.en_US
dc.identifier.citedreferenceMundey MK, Ali A, Wilson VG ( 2000 ). Pharmacological examination of contractile responses of the guinea-pig isolated ileum produced by µ-opioid receptor antagonists in the presence of, and following exposure to, morphine. Br J Pharmacol 131: 893 – 902.en_US
dc.identifier.citedreferenceNeilan CL, Akil H, Woods JH, Traynor JR ( 1999 ). Constitutive activity of the δ-opioid receptor expressed in C6 glioma cells: identification of non-peptide δ-inverse agonists. Br J Pharmacol 128: 556 – 562.en_US
dc.identifier.citedreferenceNeubig RR ( 2007 ). Missing links: mechanisms of protean agonism. Mol Pharmacol 71: 1200 – 1202.en_US
dc.identifier.citedreferencePedersen SE, Ross EM ( 1985 ). Functional activation of β-adrenergic receptors by thiols in the presence or absence of agonist. J Biol Chem 260: 14150 – 14157.en_US
dc.identifier.citedreferenceRaehal KM, Lowery JJ, Bhamidipati CM, Paolino RM, Blair JR, Wang D et al. ( 2005 ). In vivo characterization of 6β-naltrexol, an opioid ligand with less inverse agonist activity compared with naltrexone and naloxone in opioid-dependent mice. J Pharmacol Exp Ther 313: 1150 – 1162.en_US
dc.identifier.citedreferenceSadee W, Wang Z ( 1995 ). Agonist induced constitutive receptor activation as a novel regulatory mechanism. In: Sharp BM, Friedman H, Eisenstein TK, Madden JJ ( eds ). The Brain Immune Axis and Substance Abuse. Plenum Press: New York, pp. 85 – 90.en_US
dc.identifier.citedreferenceSelley DE, Cao CC, Liu Q, Childers SR ( 2000 ). Effects of sodium on agonist efficacy for G-protein activation in µ-opioid receptor-transfected CHO cells and rat thalamus. Br J Pharmacol 130: 987 – 996.en_US
dc.identifier.citedreferenceShahrestanifar M, Wang WW, Howells RD ( 1996 ). Studies on inhibition of µ and δ opioid receptor binding by dithiothreitol and N-ethylmaleimide. J Biol Chem 271: 5505 – 5512.en_US
dc.identifier.citedreferenceSterious SN, Walker EA ( 2003 ). Potency differences for D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 as an antagonist of peptide and alkaloid µ-agonists in an antinociception assay. J Pharmacol Exp Ther 304: 301 – 309.en_US
dc.identifier.citedreferenceStrange PG ( 2008 ). Agonist binding, agonist affinity and agonist efficacy at G protein-coupled receptors. Br J Pharmacol 153: 1353 – 1363.en_US
dc.identifier.citedreferenceSzekeres PG, Traynor JR ( 1997 ). Delta opioid modulation of the binding of guanosine-5′-O-(3-[ 35 S]thio)triphosphate to NG108-15 cell membranes: characterization of agonist and inverse agonist effects. J Pharmacol Exp Ther 283: 1276 – 1284.en_US
dc.identifier.citedreferenceSzucs M, Boda K, Gintzler AR ( 2004 ). Dual effects of DAMGO [D-Ala 2,N-Me-Phe 4,Gly 5 -ol]-enkephalin and CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH 2 ) on adenylyl cyclase activity: implications for µ-opioid receptor Gs coupling. J Pharmacol Exp Ther 310: 256 – 262.en_US
dc.identifier.citedreferenceWalker EA ( 2006 ). In vivo pharmacological resultant analysis reveals noncompetitive interactions between opioid antagonists in the rat tail-withdrawal assay. Br J Pharmacol 149: 1071 – 1082.en_US
dc.identifier.citedreferenceWalker EA, Sterious SN ( 2005 ). Opioid antagonists differ according to negative intrinsic efficacy in a mouse model of acute dependence. Br J Pharmacol 145: 975 – 983.en_US
dc.identifier.citedreferenceWalwyn W, Evans CJ, Hales TG ( 2007 ). β-arrestin2 and cSrc regulate the constitutive activity and recycling of µ opioid receptors in dorsal root ganglion neurons. J Neurosci 27: 5092 – 5102.en_US
dc.identifier.citedreferenceWang D, Raehal KM, Bilsky EJ, Sadee W ( 2001 ). Inverse agonists and neutral antagonists at µ-opioid receptor (MOR): possible role of basal receptor signaling in narcotic dependence. J Neurochem 77: 1590 – 1600.en_US
dc.identifier.citedreferenceWang D, Raehal KM, Lin ET, Lowery JJ, Kieffer BL, Bilsky EJ et al. ( 2004 ). Basal signaling activity of µ-opioid receptor in mouse brain: role in narcotic dependence. J Pharmacol Exp Ther 308: 512 – 520.en_US
dc.identifier.citedreferenceWang D, Sun X, Sadee W ( 2007a ). Different effects of opioid antagonists on µ-, δ-, and κ-opioid receptors with and without agonist pretreatment. J Pharmacol Exp Ther 321: 544 – 552.en_US
dc.identifier.citedreferenceWang H, Guang W, Barbier E, Shapiro P, Wang JB ( 2007b ). Mu opioid receptor mutant, T394A, abolishes opioid-mediated adenylyl cyclase superactivation. Neuroreport 18: 1969 – 1973.en_US
dc.identifier.citedreferenceWang Z, Bilsky EJ, Porreca F, Sadee W ( 1994 ). Constitutive mu opioid receptor activation as a regulatory mechanism underlying narcotic tolerance and dependence. Life Sci 54: PL339 – PL350.en_US
dc.identifier.citedreferenceWang Z, Bilsky EJ, Xang D, Porreca F, Sadee W ( 1999 ). 3-Isobutyl-1-methylxanthine inhibits basal µ-opioid receptor phosphorylation and reverses acute morphine tolerance and dependence in mice. Eur J Pharmacol 371: 1 – 9.en_US
dc.identifier.citedreferenceWatts VJ, Neve KA ( 2005 ). Sensitization of adenylate cyclase by Gαi/o-coupled receptors. Pharmacol Ther 106: 405 – 421.en_US
dc.identifier.citedreferenceYabaluri N, Medzihradsky F ( 1997 ). Down-regulation of the µ-opioid receptor by full but not partial agonists is independent of G protein coupling. Mol Pharmacol 52: 896 – 902.en_US
dc.identifier.citedreferenceZaki PA, Keith DE, Jr, Thomas JB, Carroll FI, Evans CJ ( 2001 ). Agonist-, antagonist-, and inverse agonist-regulated trafficking of the δ-opioid receptor correlates with, but does not require, G protein activation. J Pharmacol Exp Ther 298: 1015 – 1020.en_US
dc.identifier.citedreferenceZhao H, Loh H, Law PY ( 2006 ). Adenylyl cyclase superactivation induced by long-term treatment with opioid agonists is dependent on receptor localization within lipid rafts and is independent of receptor internalization. Mol Pharmacol 69: 1421 – 1432.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.