Show simple item record

Molecular identification of proline-rich protein genes induced during root formation in grape ( Vitis vinifera L.) stem cuttings

dc.contributor.authorThomas, P.en_US
dc.contributor.authorLee, M. M.en_US
dc.contributor.authorSchiefelbein, John W.en_US
dc.date.accessioned2010-06-01T18:46:07Z
dc.date.available2010-06-01T18:46:07Z
dc.date.issued2003-09en_US
dc.identifier.citationTHOMAS, P.; LEE, M. M.; SCHIEFELBEIN, J. (2003). "Molecular identification of proline-rich protein genes induced during root formation in grape ( Vitis vinifera L.) stem cuttings." Plant, Cell & Environment 26(9): 1497-1504. <http://hdl.handle.net/2027.42/71965>en_US
dc.identifier.issn0140-7791en_US
dc.identifier.issn1365-3040en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71965
dc.description.abstractVegetative reproduction relies on the initiation of new plant organs in response to environmental changes. The rapid formation of roots, and ultimately whole plants, from stem cuttings of grape ( Vitis vinifera L.) provides a useful system to investigate the physiological and molecular basis of organ initiation during vegetative reproduction. In the present study the differential RNA display technique was employed to identify two genes, VvPRP1 and VvPRP2 , that are induced in stem cuttings of grape during rooting. Each of these genes encodes a distinct type of proline-rich protein that is related to different groups of putative cell wall proteins, and their expression is rapidly induced in stem segments within 6 h after severing. Further, each gene's transcript becomes most concentrated in the basal portion of the stem segment in the region of new root formation. Induction of these genes is not significantly enhanced by indole-3-acetic acid (IAA) treatment, and the expression of the VvPRP1 gene, but not the VvPRP2 gene, is wound-inducible. These results suggest that these VvPRP genes play an important role in the initiation of new roots on grape stem cuttings, perhaps by altering the cell wall mechanical properties to enable root emergence.en_US
dc.format.extent458923 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2003 Blackwell Publishing Ltden_US
dc.subject.otherCell Wallen_US
dc.subject.otherDifferential Displayen_US
dc.subject.otherProline-rich Proteinsen_US
dc.subject.otherRoot Developmenten_US
dc.subject.otherVegetative Propagationen_US
dc.subject.otherWoundingen_US
dc.titleMolecular identification of proline-rich protein genes induced during root formation in grape ( Vitis vinifera L.) stem cuttingsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71965/1/j.1365-3040.2003.01071.x.pdf
dc.identifier.doi10.1046/j.1365-3040.2003.01071.xen_US
dc.identifier.sourcePlant, Cell & Environmenten_US
dc.identifier.citedreferenceAhn J. H., Choi Y., Kwon Y. M., Kim S. -G., Choi Y. D. & Lee J. S. ( 1996 ) A novel extensin gene encoding a hydroxyproline-rich glycoprotein requires sucrose for its wound-inducible expression in transgenic plants. Plant Cell 0, 1477 – 1490.en_US
dc.identifier.citedreferenceAltschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W. & Lipman D. J. ( 1997 ) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389 – 3402.en_US
dc.identifier.citedreferenceBernhardt C. & Tierney M. L. ( 2000 ) Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation. Plant Physiology 122, 705 – 714.en_US
dc.identifier.citedreferenceCaboni E., Lauri P., Watillon B. & Damiano C. ( 1997 ) Isolation of mRNA species related to the rooting induction in almond and apple through the differential display technique. Biologia Plantarum 39, 99 – 104.en_US
dc.identifier.citedreferenceCassab G. I. ( 1998 ) Plant cell wall proteins. Annual Review of Plant Physiology and Plant Molecular Biology 49, 281 – 309.en_US
dc.identifier.citedreferenceDavies C. & Robinson S. P. ( 2000 ) Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterization of cDNAs encoding putative cell wall and stress response proteins. Plant Physiology 122, 803 – 812.en_US
dc.identifier.citedreferenceDeutch C. E. & Winicov I. ( 1995 ) Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Molecular Biology 27, 411 – 418.en_US
dc.identifier.citedreferenceDhindsa R. S., Dong G. & Lalonde L. ( 1987 ) Altered gene expression during auxin-induced root development from excised mung bean seedlings. Plant Physiology 84, 1148 – 1153.en_US
dc.identifier.citedreferenceEbener W., Folwer T. J., Suzuki H., Shaver J. & Tierney M. L. ( 1993 ) Expression of DcPRP1 is linked to carrot storage root formation and is induced by wounding and auxin treatment. Plant Physiology 101, 259 – 265.en_US
dc.identifier.citedreferenceGamus P., Niebel F. C., Lescure N. & Cullimore J. ( 1996 ) Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Molecular Plant Microbe Interactions 9, 233 – 242.en_US
dc.identifier.citedreferenceGoldfarb B., Lian Z., Lanz-Garcia C. & Whetten R. ( 1997 ) Auxin-induced gene expression during rooting of loblolly pine stem cuttings. In The Biology of Root Formation and Development (eds A. Altman & F. Waisel ), pp. 163 – 167. Plenum Press, New York, USA.en_US
dc.identifier.citedreferenceHartmann K. T., Kester D. E., Davies F. T. & Geneve R. L. ( 1997 ) Plant Propagation-Principles and Practices, 6th edn. Prentice Hall, Englewood Cliffs, NJ, USA.en_US
dc.identifier.citedreferenceHutchison K. W., Singer P. B., McInnis S., Diaz-Sala C. & Greenwood M. S. ( 1999 ) Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin. Plant Physiology 120, 827 – 832.en_US
dc.identifier.citedreferenceJarvis B. C. ( 1986 ) Endogenous control of adventitious rooting in non-woody cuttings. In New Root Formation in Plants and Cuttings (ed. M. B. Jackson ), pp. 191 – 222. Martinus-Nijhoff Publishers, Dordrecht, The Netherlands.en_US
dc.identifier.citedreferenceKeller B. & Lamb C. J. ( 1989 ) Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation. Genes and Development 3, 1639 – 1646.en_US
dc.identifier.citedreferenceKing G. A., O'Donoghue E. M., Borst W. M., Davies K. M., Moyle R. L. & Farnden K. J. ( 1996 ) Identification and characterization of an mRNA encoding a proline-rich protein that rapidly declines in abundance in the tips of harvested asparagus spears. Plant and Cell Physiology 37, 706 – 710.en_US
dc.identifier.citedreferenceLiang P. & Pardee A. B. ( 1992 ) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967 – 971.en_US
dc.identifier.citedreferenceLoulakakis K. A., Roubelakis-Angelakis K. A. & Kanellis A. K. ( 1996 ) Isolation of functional RNA from grapevine tissues poor in nucleic acid content. American Journal of Enology and Viticulture 47, 181 – 185.en_US
dc.identifier.citedreferenceNeuteboom L. W., Ng J. M. Y., Kuyper M., Clijdesdale O. R., Hooykaas P. J. J. & van der Zaal B. J. ( 1999 ) Isolation and characterization of cDNA clones corresponding with mRNAs that accumulate during auxin-induced lateral root formation. Plant Molecular Biology 39, 273 – 287.en_US
dc.identifier.citedreferenceReuber T. L. & Ausubel F. M. ( 1995 ) Differential mRNA display. In Methods in Cell Biology (eds D. W. Galbraith, H. J. Bohnert & D. P. Borque ) Vol. 49, pp. 431 – 440. Academic Press, New York, USA.en_US
dc.identifier.citedreferenceSambrook J., Fritsch E. F. & Maniatis T. ( 1989 ) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring. Harbor Laboratory Press, Cold Spring Harbor, NY, USA.en_US
dc.identifier.citedreferenceShowalter A. M. ( 1993 ) Structure and function of plant cell wall proteins. Plant Cell 5, 9 – 23.en_US
dc.identifier.citedreferenceThomas P. ( 1997 ) Increase in clonal propagation of ‘Arka Neelamani’ grape ( Vitis vinifera L.) through induction of axillaries in in vitro layering technique. Indian Journal of Agricultural Science 67, 594 – 596.en_US
dc.identifier.citedreferenceThomas P. ( 1998 ) Humid incubation period and plantlet age influence acclimatization and establishment of micropropagated grapes. In Vitro Cellular and Developmental Biology of Plants 34, 52 – 56.en_US
dc.identifier.citedreferenceThomas P. & Schiefelbein J. W. ( 2002 ) Improved method for purification of RNA from stem tissue of grapevine and its use in mRNA profiling. American Journal of Enology and Viticulture 53, 231 – 234.en_US
dc.identifier.citedreferenceWoo H. -H., Hackett W. P. & Das A. ( 1994 ) Differential expression of a chlorophyll a / b binding protein gene and a proline rich protein gene in juvenile and mature phase English ivy ( Hedera helix ). Physiologia Plantarum 92, 69 – 78.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.