Show simple item record

The planform of epeirogeny: vertical motions of Australia during the Cretaceous

dc.contributor.authorRussell, Marken_US
dc.contributor.authorGurnis, Michaelen_US
dc.date.accessioned2010-06-01T18:47:15Z
dc.date.available2010-06-01T18:47:15Z
dc.date.issued1994-06en_US
dc.identifier.citationRussell, MARK; Gurnis, MICHAEL (1994). "The planform of epeirogeny: vertical motions of Australia during the Cretaceous." Basin Research 6(2-3): 63-76. <http://hdl.handle.net/2027.42/71983>en_US
dc.identifier.issn0950-091Xen_US
dc.identifier.issn1365-2117en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71983
dc.description.abstractEstimates of dynamic motion of Australia since the end of the Jurassic have been made by modeling marine flooding and comparing it with palaeogeographical reconstructions of marine inundation. First, sediment isopachs were back stripped from present-day topography. Dynamic motion was determined by the displacement needed to approximate observed flooding when allowance is made for changes in eustatic sea-level. The reconstructed inundation patterns suggest that during the Cretaceous, Australia remained a relatively stable platform, and flooding in the eastern interior during the Early Cretaceous was primarily the result of the regional tectonic motion. Vertical motion during the Cretaceous was much smaller than the movement since the end of the Cretaceous. Subsidence and marine flooding in the Eromanga and Surat Basins, and the subsequent 500 m of uplift of the eastern portion of the basin, may have been driven by changes in plate dynamics during the Mesozoic. Convergence along the north-east edge of Australia between 200 and 100 Ma coincides with platform sedimentation and subsidence within the Eromanga and Surat Basins. A major shift in the position of subduction at 140 Ma was coeval with the marine incursion into the Eromanga. When subduction ended at 95 Ma, marine inundation of the Eromanga also ended. Subsidence and uplift of the eastern interior is consistent with dynamic models of subduction in which subsidence is generated when the dip angle of the slab decreases and uplift is generated when subduction terminates (i.e. the dynamic load vanishes). Since the end of the Cretaceous, Australia has uniformly subsided by about 250 m with little apparent tilting. This vertical subsidence may have resulted from the northward migration of the continent from a dynamic topography high and geoid low toward lower dynamic topography and a higher geoid.en_US
dc.format.extent1612787 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1994 Blackwell Publishing Ltden_US
dc.titleThe planform of epeirogeny: vertical motions of Australia during the Cretaceousen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, The University of Michigan, Ann Arbor, MI 48109–1063, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71983/1/j.1365-2117.1994.tb00076.x.pdf
dc.identifier.doi10.1111/j.1365-2117.1994.tb00076.xen_US
dc.identifier.sourceBasin Researchen_US
dc.identifier.citedreferenceBMR Paleogeographic Group ( 1990 ) Cretaceous Paleogeo-graphic Maps Record 1990/30 Paleogeographic Series 14, Bureau of Mineral Resources, Canberra.en_US
dc.identifier.citedreferenceBond, G. ( 1978 ) Speculations on real sea-level changes and vertical motions of continents at selected times in the Cretaceous and Tertiary Periods. Geology, 6, 247 – 250.en_US
dc.identifier.citedreferenceBond, G. C. ( 1979 ) Evidence for some uplifts of large magnitudes in continental platforms. Tectonophysics, 61, 285 – 305.en_US
dc.identifier.citedreferenceBond, G. C. & Kominz, M. A. ( 1991 ) Disentangling middle Paleozoic sea level and tectonic events in cratonic margins and cratonic basins of North America. J. geophys. Res., 96, 6619 – 6639.en_US
dc.identifier.citedreferenceCazenave, A. & Lago, B. ( 1991 ) Long-wavelength topography, seafloor subsidence and flattening. Geophys. Res. Lett., 18, 1257 – 1260.en_US
dc.identifier.citedreferenceChristie-Blick, N., Mountain, G. S. & Miller, K. G. ( 1990 ) Seismic stratigraphic record of sea-level change. In: Sea-level Change ( Ed. by R. R. Revelle ), pp. 161 – 140. National Academy Press, Washington 1:250 000 sheet area, Queensland. Bureau of Mineral Resources, Australia, Report 144.en_US
dc.identifier.citedreferenceClarke, D. E., Paine, A. G. L. & Jensen, A. R. ( 1971 ) Geology of the Prosperline 1:250,000 sheet area, Queensland. Aust. Bur. Miner. Resource., Geol. Geophys. Rep., 144.en_US
dc.identifier.citedreferenceCochran, J. R. ( 1986 ) Variations in subsidence rates along intermediate and fast spreading mid-ocean ridges. Geophys. J. R. astron. Sco., 87, 421 – 454.en_US
dc.identifier.citedreferenceCrough, S. T. ( 1983 ) Hot spot swells. Ann. Rev. Earth planet. Sci., 11, 165 – 193.en_US
dc.identifier.citedreferenceExon, N. F. & Senior, B. R. ( 1976 ) The Cretaceous of the Eromanga and Surat Basins. BMR J. Am. Geol. Geophys., 1, 33 – 50.en_US
dc.identifier.citedreferenceFalvey, D. A. & Mutter, J. C. ( 1981 ) Regional plate tectonics and the evolution of Australia's passive Continental margins. BMR J. Aust. Geol. Geophys., 6, 1 – 29.en_US
dc.identifier.citedreferenceFraser, A. R. & Tilbury, L. A. ( 1979 ) Structure and stratigraphy of the Ceduna Terrace region, Great Australian Bight Basin. APEA J., 19, 53 – 65.en_US
dc.identifier.citedreferenceGallagher, K. ( 1990 ) Permian to Cretaceous subsidence history along the Eromanga-Brisbane Geoscience Transect. In: Bulletin 232, The Eromanga—Brisbane Geoscience Transect: A Guide to Basin Development Across Phanerozoic Australia in Southern Queensland ( Ed. by D. M. Finlayson ), pp. 133 – 151. Bureau of Mineral Resources, Geology and Geophysics, Canberra.en_US
dc.identifier.citedreferenceGallagher, K. & Lambeck, K. ( 1989 ) Subsidence, sedimentation and sea-level changes in the Eromanga Basin, Australia. Basin Res., 2, 115 – 131.en_US
dc.identifier.citedreferenceGurnis, M. ( 1990 ) Bounds on global dynamic topography from Phanerozoic flooding of continental platforms. Nature, 344, 754 – 756.en_US
dc.identifier.citedreferenceGurnis, M. ( 1992a ) Long-term controls on eustatic and epeirogenic motions by mantle convection. GSA Today, 2, 141 – 157.en_US
dc.identifier.citedreferenceGurnis, M. ( 1992b ) Rapid continental subsidence following the initiation and evolution of seduction. Science, 255, 1556 – 1558.en_US
dc.identifier.citedreferenceHagek, B. H. & Clayton, R. W. ( 1989 ) Constraints on the structure of mantle convection using seismic observations, flow models, and the geoid. In: Mantle Convection ( Ed. by R. W. Peltier ), pp. 657 – 763. Gordon and Breach Science Publishers, New York.en_US
dc.identifier.citedreferenceHager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P. & Dziewonski, A. M. ( 1985 ) Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313, 541 – 545.en_US
dc.identifier.citedreferenceHallam, A. ( 1977 ) Secular changes in marine inundation of USSR and North America through the Phanerozoic. Nature, 269, 769 – 772.en_US
dc.identifier.citedreferenceHaq, B. U., Hardenbol, J. & Vail, P. R. ( 1987 ) Chronology of fluctuating sea level since the Triassic. Science, 235, 1156 – 1167.en_US
dc.identifier.citedreferenceHays, D. E. ( 1988 ) Age-depth relationships and depth anomalies in the southeast Indian ocean and South Atlantic Ocean. J. geophys. Res., 93, 2937 – 2954.en_US
dc.identifier.citedreferenceJones, J. G. & Veevers, J. J. ( 1983 ) A Cainozoic history of Australia's southeast highlands. J. geol. Soc. Australia, 29, 1 – 12.en_US
dc.identifier.citedreferenceMitrovica, J. X., Beaumont, C. & Jarvis, G. T. ( 1989 ) Tilting of continental interiors by the dynamical effects of subduction. Tectonics, 8, 1079 – 1094.en_US
dc.identifier.citedreferencePribac, F. ( 1991 ) Superswells due to. mantle convection. PhD thesis, Australian National University, Canberra.en_US
dc.identifier.citedreferenceRichards, M. A. & Hager, B. H. ( 1984 ) Geoid anomalies in a dynamic Earth. J. geophys. Res., 89, 5987 – 6002.en_US
dc.identifier.citedreferenceSahagian, D. L. & Holland, S. M. ( 1991 ) Eustatic sea-level curve based on a stable frame of reference: preliminary results. Geology, 19, 1209 – 1212.en_US
dc.identifier.citedreferenceSahagian, D. & Jones, M. ( 1993 ) Quantified middle-Jurassic to Paleocenc eustatic variations based on Russian platform stratigraphy: stage level resolution. Bull. geol. Soc. Am., 105, 1109 – 1118.en_US
dc.identifier.citedreferenceSahagian, D. L. & Watts, A. B. ( 1991 ) Introduction to the special section on measurement, causes, and consequences of long-term sea level change. J. geophys. Res., 96, 6585 – 6589.en_US
dc.identifier.citedreferenceSmith, W. H. & Wessel., P. ( 1990 ) Gridding with continuous curvature splines in tension. Geophysiscs, 55, 293 – 305.en_US
dc.identifier.citedreferenceSteckler, M. & Watts, A: B. ( 1978 ) Subsidence of the Atlantic-type continental margin off New York. Earth planet. Sci. Lett., 41, 1 – 13.en_US
dc.identifier.citedreferenceStephenson, P. J. & Lambeck, K. ( 1985 ) Erosion-isostatic rebound models for uplift an application to south-eastern Australia. Geophys. J. R. astron. Soc., 82, 31 – 55.en_US
dc.identifier.citedreferenceStruckmeyer, H. I. M. & Brown, P. J. ( 1990 ) Australian Sealevel Curves part 1: Australian Inundation Curves, BMR Record 1990/11. Bureau of Mineral Resources, Canberra.en_US
dc.identifier.citedreferenceTurcotte, D. L. & Schubkrt, G. ( 1982 ) GEODYNAMICS Applications of Continuum Physics to Geological Problem. John Wiley & Sons, New York.en_US
dc.identifier.citedreferenceVail., P. R., Mitchum Jr, R. M., Todd, R. G., Widmier, J. M., Thompson, S., Sougree, J. R., Bubb, J. N. & Hatlelid, W. G. ( 1977 ) Seismic stratigraphy and global changcs in sea level. AAPG Mem., 26, 49 – 212.en_US
dc.identifier.citedreferenceVeevers, J. J., ( Ed. ) ( 1984 ) Phanerozoic Earth History of Australia. Clarendon Press, Oxford.en_US
dc.identifier.citedreferenceVeevers, C. McA. & Roots, S. R. ( 1991 ) Reviews of seafloor spreading around Australia. I. Synthesis of the patterns of spreading. Aust. J. Earth Sci., 38, 373 – 389.en_US
dc.identifier.citedreferenceWatts, A. B. & Steckler, M. S. ( 1979 ) Subsidence and eustasy at the continent margin of eastern North America. In: Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment ( Ed. by HI. Talwani, W. Hays & W. B. F. Ryan ), pp. 218 – 234. AGU, Maurice Ewing Series, J. Washington, DC.en_US
dc.identifier.citedreferenceWellman, P. ( 1987 ) Eastern Highlands of Australia; their uplift and erosion. BMR J. Aust. Geol. Geophys., 10, 277 – 286.en_US
dc.identifier.citedreferenceWessej., P. & Smith, W. H. F. ( 1991 ) Frec softw-are helps map and display data. EOS Truns., AGU72, 441.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.