Case report and literature review: transient Inab phenotype and an agglutinating anti-IFC in a patient with a gastrointestinal problem
dc.contributor.author | Yazer, Mark H. | en_US |
dc.contributor.author | Judd, W. John | en_US |
dc.contributor.author | Davenport, Robertson D. | en_US |
dc.contributor.author | Dake, Louann R/ | en_US |
dc.contributor.author | Lomas-Francis, Christine | en_US |
dc.contributor.author | Hue-Roye, Kim | en_US |
dc.contributor.author | Powell, Vivien | en_US |
dc.contributor.author | Reid, Marion E. | en_US |
dc.date.accessioned | 2010-06-01T18:47:48Z | |
dc.date.available | 2010-06-01T18:47:48Z | |
dc.date.issued | 2006-09 | en_US |
dc.identifier.citation | Yazer, Mark H.; Judd, W. John; Davenport, Robertson D.; Dake, Louann R.; Lomas-Francis, Christine; Hue-Roye, Kim; Powell, Vivien; Reid, Marion (2006). "Case report and literature review: transient Inab phenotype and an agglutinating anti-IFC in a patient with a gastrointestinal problem." Transfusion 46(9): 1537-1542. <http://hdl.handle.net/2027.42/71992> | en_US |
dc.identifier.issn | 0041-1132 | en_US |
dc.identifier.issn | 1537-2995 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/71992 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16965581&dopt=citation | en_US |
dc.description.abstract | The Inab phenotype is a rare deficiency of all Cromer antigens. These antigens are carried on the decay-accelerating factor (DAF, CD55) molecule that is attached to the red blood cell (RBC) membrane by a glycosylphosphatidylinositol (GPI) anchor. Although typically inherited, an acquired and transient form of the Inab phenotype also exists. A patient with the triad of transient Inab phenotype, a direct-agglutinating anti-IFC, and gastrointestinal (GI) abnormalities is reported. CASE REPORT: An 18-month-old boy with gastroesophageal reflux disease requiring a feeding tube, milk and soy intolerance, and severe growth retardation, as well as vision and hearing deficits from cytomegalovirus infection, was identified when pretransfusion testing revealed a potent panagglutinin (titer > 2000 at 4°C). This antibody did not react with Dr(a–) and IFC RBCs, and the autocontrol was negative. The patient’s RBCs lacked CD55 by flow cytometric techniques but had normal levels of CD59 and antigens such as Yt a and Emm, carried on GPI-linked proteins, thus excluding paroxysmal nocturnal hemoglobinuria. Several months after initial detection, the anti-IFC was virtually undetectable and his cells reacted weakly with anti-IFC, anti-Dr a , and anti-CD55. RBCs from the propositus’ parents and brother demonstrated normal CD55 and CD59 expression. CONCLUSION: This is the first example of a direct-agglutinating anti-IFC. The cause of the transient depression in CD55 protein (and thus Cromer system antigens) and appearance of anti-IFC remains unknown, as does the relationship between the patient’s GI system abnormalities and these serologic findings. | en_US |
dc.format.extent | 101796 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Inc | en_US |
dc.rights | 2006 American Association of Blood Banks | en_US |
dc.title | Case report and literature review: transient Inab phenotype and an agglutinating anti-IFC in a patient with a gastrointestinal problem | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Oncology and Hematology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.identifier.pmid | 16965581 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/71992/1/j.1537-2995.2006.00933.x.pdf | |
dc.identifier.doi | 10.1111/j.1537-2995.2006.00933.x | en_US |
dc.identifier.source | Transfusion | en_US |
dc.identifier.citedreference | Daniels G. Human blood groups. 2nd ed. Oxford: Blackwell Science; 2002. | en_US |
dc.identifier.citedreference | Reid ME, Powell V, Barnes J, et al. ZENA: a new high prevalence Cromer blood group antigen [abstract]. Transfusion 2004; 44 ( Suppl ): 26A. | en_US |
dc.identifier.citedreference | Storry JR, Sausais L, Hue-Roye K, et al. GUTI: a new antigen in the Cromer blood group system. Transfusion 2003; 43: 340 - 4. | en_US |
dc.identifier.citedreference | Banks J, Poole J, Ahrens N, et al. SERF. a new antigen in the Cromer blood group system. Transfus Med 2004; 14: 313 - 8. | en_US |
dc.identifier.citedreference | Storry JR, Reid ME. The Cromer blood group system: a review. Immunohematology 2002; 18: 95 - 103. | en_US |
dc.identifier.citedreference | Ivankovic Z, Golubic Cepulic B, Bekavac M, et al. CROV: a new high prevalence Cromer blood group antigen. Transfusion 2005; 45 ( Suppl ): 122A. | en_US |
dc.identifier.citedreference | Lublin DM. Review: Cromer and DAF: role in health and disease. Immunohematology 2005; 21: 39 - 47. | en_US |
dc.identifier.citedreference | Rosse WF, Ware RE. The molecular basis of paroxysmal nocturnal hemoglobinuria. Blood 1995; 86: 3277 - 86. | en_US |
dc.identifier.citedreference | Rosse WF, Nishimura J. Clinical manifestations of paroxysmal nocturnal hemoglobinuria. the present state and future problems. Int J Hematol 2003; 77: 113 - 20. | en_US |
dc.identifier.citedreference | Levene C, Harel N, Lavie G, et al. A “new” phenotype confirming a relationship between Cr a and Tc a. Transfusion 1984; 24: 13 - 5. | en_US |
dc.identifier.citedreference | Lublin DM, Thompson ES, Green AM, Levene C, Telen MJ. Dr(a-) polymorphism of decay accelerating factor: biochemical, functional and molecular characterization and production of allele-specific transfectants. J Clin Invest 1991; 87: 1945 - 52. | en_US |
dc.identifier.citedreference | Reid ME, Mallinson G, Sim RB, et al. Biochemical studies on the red blood cells from a patient with the Inab phenotype (decay accelerating factor deficiency). Blood 1991; 78: 3291 - 7. | en_US |
dc.identifier.citedreference | Lublin DM, Mallinson G, Poole J, et al. Molecular basis of reduced or absent expression of decay-accelerating factor in Cromer blood group phenotypes. Blood 1994; 84: 1276 - 82. | en_US |
dc.identifier.citedreference | Daniels GL, Tohyama H, Uchikawa M. A possible null phenotype in the Cromer blood group complex. Transfusion 1982; 22: 362 - 3. | en_US |
dc.identifier.citedreference | Walthers L, Salem M, Tessel J, et al. The Inab phenotype: another example found. Transfusion 1983; 23 ( Suppl ): 423. | en_US |
dc.identifier.citedreference | Lin RC, Herman J, Henry L, et al. A family showing inheritance of the Inab phenotype. Transfusion 1988; 28: 427 - 9. | en_US |
dc.identifier.citedreference | Wang L, Uchikawa M, Tsuneyama H, et al. Molecular cloning and characterization of decay-accelerating factor deficiency in Cromer blood group Inab phenotype. Blood 1998; 91: 680 - 4. | en_US |
dc.identifier.citedreference | Daniels G, Green CA, Mallinson G, et al. Decay-accelerating factor (CD55) deficiency in Japanese. Transfus Med 1998; 8: 141 - 7. | en_US |
dc.identifier.citedreference | Uchikawa M, Tsuneyama H, Ogasawara K, et al. Another example of Inab phenotype in Japanese and production of human monoclonal anti-DAF. Vox Sang 2004; 87 ( S3 ): 41. | en_US |
dc.identifier.citedreference | Hue-Roye K, Powell VI, Patel G, et al. Novel molecular basis of an Inab phenotype. Immunohematology 2005; 21: 53 - 5. | en_US |
dc.identifier.citedreference | Matthes T, Tullen E, Poole J, et al. Acquired and transient RBC CD55 deficiency (Inab phenotype) anti-IFC. Transfusion 2002; 42: 1448 - 57. | en_US |
dc.identifier.citedreference | Banks J, Poole J, Prowse C, et al. Transient loss of Cromer antigens and anti-IFC in a patient with chronic lymphatic leukemia. Vox Sang 2004; 87 ( S3 ): 37. | en_US |
dc.identifier.citedreference | Judd WJ. Methods in immunohematology. 2nd ed. Durham (NC): Montgomery Scientific Publications; 1994. | en_US |
dc.identifier.citedreference | Nowicki B, Moulds J, Hull R, et al. A hemagglutinin of uropathogenic Escherichia coli recognizes the Dr blood group antigen. Infect Immun 1988; 56: 1057 - 60. | en_US |
dc.identifier.citedreference | Judd WJ, Cooling L. Novel application of the gel test: detection of microbial-induced hemagglutination. Vox Sang 2004; 87 ( S3 ): 76. | en_US |
dc.identifier.citedreference | Telen MJ, Rao N, Udani M, et al. Molecular mapping of the Cromer blood group Cr a and Tc a epitopes of decay accelerating factor: toward the use of recombinant antigens in immunohematology. Blood 1994; 84: 3205 - 11. | en_US |
dc.identifier.citedreference | Marsh WL, Nichols ME, Oyen R, et al. Naturally occurring anti-Kell stimulated by E. coli enterocolitis in a 20-day-old child. Transfusion 1978; 18: 149 - 54. | en_US |
dc.identifier.citedreference | Medof ME, Walter EI, Rutgers JL, et al. Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J Exp Med 1987; 165: 848 - 64. | en_US |
dc.identifier.citedreference | Lin F, Spencer D, Hatala DA, et al. Decay-accelerating factor deficiency increases susceptibility to dextran sulfate sodium-induced colitis: role for complement in inflammatory bowel disease. J Immunol 2004; 172: 3836 - 41. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.