Show simple item record

Simple temporal models for ecological systems with complex spatial patterns

dc.contributor.authorPascual, Mercedesen_US
dc.contributor.authorRoy, Manojiten_US
dc.contributor.authorFranc, Alainen_US
dc.date.accessioned2010-06-01T18:48:59Z
dc.date.available2010-06-01T18:48:59Z
dc.date.issued2002-05en_US
dc.identifier.citationPascual, Mercedes; Roy, Manojit; Franc, Alain (2002). "Simple temporal models for ecological systems with complex spatial patterns." Ecology Letters 5(3): 412-419. <http://hdl.handle.net/2027.42/72011>en_US
dc.identifier.issn1461-023Xen_US
dc.identifier.issn1461-0248en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72011
dc.description.abstractSpatial patterns are ubiquitous in nature. Because these patterns modify the temporal dynamics and stability properties of population densities at a range of spatial scales, their effects must be incorporated in temporal ecological models that do not represent space explicitly. We demonstrate a connection between a simple parameterization of spatial effects and the geometry of clusters in an individual-based predator–prey model that is both nonlinear and stochastic. Specifically we show that clusters exhibit a power-law scaling of perimeter to area with an exponent close to unity. In systems with a high degree of patchiness, similar power-law scalings can provide a basis for applying simple temporal models that assume well-mixed conditions.en_US
dc.format.extent514962 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2002 Blackwell Science Ltd/CNRSen_US
dc.subject.otherIndividual-based Predator–Prey Modelen_US
dc.subject.otherModified Mean-field Equationen_US
dc.subject.otherPower-law Scalingen_US
dc.subject.otherCluster Geometryen_US
dc.titleSimple temporal models for ecological systems with complex spatial patternsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.,en_US
dc.contributor.affiliationotherINRA, Forest and Natural Environment Department, Paris and Orsay University, Laboratory ESE, Franceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72011/1/j.1461-0248.2002.00334.x.pdf
dc.identifier.doi10.1046/j.1461-0248.2002.00334.xen_US
dc.identifier.sourceEcology Lettersen_US
dc.identifier.citedreferenceBolker, B.M. & Pacala, S.W. ( 1999 ). Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am. Nat., 153, 575 – 602.en_US
dc.identifier.citedreferenceBradbury, R.H. & Reichelt, R.E. ( 1983 ). Fractal dimension of a coral reef at ecological scales. Mar. Ecol. Pre. Series, 10, 169 – 171.en_US
dc.identifier.citedreferenceDavis, C.S., Gallager, S.M. & Solow, A.R. ( 1992 ). Microaggregations of oceanic plankton observed by towed video microscopy. Science, 257, 230 – 232.en_US
dc.identifier.citedreferenceDieckmann, U., Law, R. & Metz, J.A.J. ( 2002 ). The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceDurrett, R. & Levin, S. ( 2000 ). Lessons on pattern formation from planet WATOR. J. Theor. Biol., 205, 201 – 214.en_US
dc.identifier.citedreferenceFilipe, J.A.N. & Gibson, G.J. ( 1998 ). Studying and approximating spatio-temporal models for epidemic spread and control. Phil. Trans. R. Soc. Lond. B, 353, 2153 – 2162.en_US
dc.identifier.citedreferenceFinkenstÄdt, B.F. & Grenfell, B.T. ( 2000 ). Time series modeling of childhood diseases: a dynamical system approach. Appl. Stat., 49, 187 – 205.en_US
dc.identifier.citedreferenceGubbins, S. & Gilligan, C.A. ( 1997 ). A test of heterogeneous mixing as a mechanism for ecological persistence in a disturbed environment. Proc. R. Soc. Lond. B, 264, 227 – 232.en_US
dc.identifier.citedreferenceHassell, M.P. ( 1978 ). The Dynamics of Arthropod Predator–Prey Systems. Princeton University Press, Princeton, NJ.en_US
dc.identifier.citedreferenceHassell, M.P. ( 2000 ). The Spatial and Temporal Dynamics of Host–Parasitoid Interactions. Oxford University Press, Oxford.en_US
dc.identifier.citedreferenceHassell, M.P., Comins, H.N. & May, R.M. ( 1991 ). Spatial structure and chaos in insect population dynamics. Nature, 353, 255 – 258.en_US
dc.identifier.citedreferenceHassell, M.P. & May, R.M. ( 1974 ). Aggregation in predators and insect parasites and its effects on stability. J. Anim. Ecol., 43, 567 – 594.en_US
dc.identifier.citedreferenceHastings, H.M. & Sugihara, G. ( 1993 ). Fractals: A User's Guide for the Natural Sciences. Oxford University Press, New York.en_US
dc.identifier.citedreferenceIves, A.R. ( 1991 ). Aggregation and coexistence in carrion fly community. Ecol. Monogr., 61, 75 – 94.en_US
dc.identifier.citedreferenceKeeling, M.J., Wilson, H.B. & Pacala, S.W. ( 2001 ). Re-interpreting space, time-lags, and functional responses in ecological models. Science, 290, 1758 – 1761.en_US
dc.identifier.citedreferenceKrummel, J.R., Gardner, R.H., Sugihara, G., O'Neill, R.V. & Coleman, P.R. ( 1986 ). Landscape patterns in a disturbed environment. Oikos, 48, 321 – 324.en_US
dc.identifier.citedreferenceLevin, S.A. ( 1992 ). The problem of pattern and scale in ecology. Ecology, 73, 1943 – 1967.en_US
dc.identifier.citedreferenceLevin, S.A. & Pacala, S.W. ( 1997 ). Theories of simplification and scaling of spatially distributed processes. In: Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions (eds Tilman, D. and Kareiva, P.). Princeton University Press, Princeton NJ, 271–296.en_US
dc.identifier.citedreferenceLevin, S.A., Powell, T.M. & Steele, J.H. ( 1993 ). Patch Dynamics. Lectures Notes in Biomathematics. Springer-Verlag, New York.en_US
dc.identifier.citedreferencePalmer, M.W. ( 1988 ). Fractal geometry: a tool for describing spatial patterns of plant communities. Vegetatio, 75, 91 – 102.en_US
dc.identifier.citedreferencePascual, M. & Levin, S.A. ( 1999 ). From individuals to population densities: searching for the intermediate scale of nontrivial determinism. Ecology, 80, 2225 – 2236.en_US
dc.identifier.citedreferencePascual, M., Mazzega, P. & Levin, S.A. ( 2001 ). Oscillatory dynamics and spatial scale: the role of noise and unresolved pattern. Ecology, 82, 2357 – 2369.en_US
dc.identifier.citedreferencePascual, M., Roy, M., Guichard, F. & Flierl, G. ( 2002 ) Cluster size distributions: signatures of self-organization in spatial ecologies. Phil. Trans. R. Soc. Lond. B. (in press).en_US
dc.identifier.citedreferencePickett, S.T.A. & White, P.S. ( 1985 ). The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York.en_US
dc.identifier.citedreferencede Roos, A.M., McCauley, E. & Wilson, W.W. ( 1991 ). Mobility versus density-limited predator–prey dynamics on different spatial scales. Proc. Royal Soc. Lond. B, 246, 117 – 122.en_US
dc.identifier.citedreferenceRoughgarden, J. ( 1997 ). Production functions from ecological populations: a survey with emphasis on spatially-implicit models. In: Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions (eds Tilman, D. and Kareiva, P.). Princeton University Press, Princeton, NJ, pp. 296–317.en_US
dc.identifier.citedreferenceSato, K. & Iwasa, Y. ( 2000 ). Pair approximations for lattice-based ecological models. In: The Geometry of Ecological Interactions. Simplifying Spatial Complexity (eds Dieckmann, U., Law, R. and Metz, J.A.J.). Cambridge Studies in Adaptive Dynamics. Cambridge University Press, Cambridge, UK, pp. 341–357.en_US
dc.identifier.citedreferenceSocolar, J.E.S., Richards, S. & Wilson, W.G. ( 2001 ). Evolution in a spatially structured population subject to rare epidemics, Physical Review E, 63, 041908 041908.en_US
dc.identifier.citedreferenceSugihara, G. & May, R.M. ( 1990 ). Applications of fractals in ecology. Trends Ecol. Evol, 5, 79 – 86.en_US
dc.identifier.citedreferenceTilman, D. & Kareiva, P. ( 1997 ). Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions. Princeton University Press, Princeton, NJ.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.