Show simple item record

Automotive Powertrain Control — A Survey

dc.contributor.authorCook, Jeffrey A.en_US
dc.contributor.authorSun, Jingen_US
dc.contributor.authorBuckland, Julia H.en_US
dc.contributor.authorKolmanovsky, Ilya V.en_US
dc.contributor.authorPeng, Hueien_US
dc.contributor.authorGrizzle, Jessy W.en_US
dc.date.accessioned2010-06-01T18:49:44Z
dc.date.available2010-06-01T18:49:44Z
dc.date.issued2006-09en_US
dc.identifier.citationCook, Jeffrey A.; Sun, Jing; Buckland, Julia H.; Kolmanovsky, Ilya V.; Peng, Huei; Grizzle, Jessy W. (2006). "Automotive Powertrain Control — A Survey." Asian Journal of Control 8(3): 237-260. <http://hdl.handle.net/2027.42/72023>en_US
dc.identifier.issn1561-8625en_US
dc.identifier.issn1934-6093en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72023
dc.description.abstractThis paper surveys recent and historical publications on automotive powertrain control. Control-oriented models of gasoline and diesel engines and their aftertreatment systems are reviewed, and challenging control problems for conventional engines, hybrid vehicles and fuel cell powertrains are discussed. Fundamentals are revisited and advancements are highlighted. A comprehensive list of references is provided.en_US
dc.format.extent2007204 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2006 Asian Control Association/Chinese Automatic Control Societyen_US
dc.subject.otherAutomotiveen_US
dc.subject.otherPowertrainen_US
dc.subject.otherModelingen_US
dc.subject.otherControlen_US
dc.titleAutomotive Powertrain Control — A Surveyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEngineering and Computer Science Engineeringen_US
dc.subject.hlbsecondlevelIndustrial and Operations Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumthe Ford Research and Advanced Engineering, Dearborn, Michigan 48121, U.S.A.en_US
dc.contributor.affiliationumthe University of Michigan, Ann Arbor, Michigan, 48109, U.S.A. (e-mail: jingsun@umich.edu ).en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72023/1/j.1934-6093.2006.tb00275.x.pdf
dc.identifier.doi10.1111/j.1934-6093.2006.tb00275.xen_US
dc.identifier.sourceAsian Journal of Controlen_US
dc.identifier.citedreference1. Proc. 1st IFAC Symp. Adv. Automot. Contr., Ascona ( 1995 ).en_US
dc.identifier.citedreference2. Proc. 2nd IFAC Symp. Adv. Automot. Contr., Ohio State University, USA ( 1998 ).en_US
dc.identifier.citedreference3. Proc. 3rd IFAC Symp. Adv. Automot. Contr., University of Karlsruhe, Germany ( 2001 ).en_US
dc.identifier.citedreference4. Proc. 4th IFAC Symp. Adv. Automot. Contr., University of Salerno, Italy ( 2004 ).en_US
dc.identifier.citedreference5. Workshop Integr. Modeling Contr. Automot. Syst., Santa Barbara ( 1999 ). http://www.ghost.engin.umich.edu/wrkshop.html.en_US
dc.identifier.citedreferenceGuzzella, L. and C.H. Onder, Introduction to Modeling and Control of Internal Combustion Engine Systems, Springer, London ( 2004 ).en_US
dc.identifier.citedreferenceBuckland, J.H. and J.A. Cook, “Automotive Emissions Control,” Proc. Amer. Contr. Conf., Portland, OR ( 2005 ).en_US
dc.identifier.citedreferenceBrandt, E.P., Y. Wang, and J.W. Grizzle, “Dynamic Modeling of a Three-Way Catalyst for SI Engine Exhaust Emission Control,” IEEE Trans. Contr. Syst. Technol., Vol. 8, No. 5, pp. 767 – 776 ( 2000 ).en_US
dc.identifier.citedreferenceFiengo, G., L. Glielmo, and S. Santini, “On Board Diagnosis for Three-Way Catalytic Converters,” Int. J. Robust Nonlin. Contr., Special Issue on Automotive Control, Vol. 11, No. 11, ( 2001 ).en_US
dc.identifier.citedreferenceJones, J. P., “Modelling Combined Catalyst Oxygen Storage and Reversible Deactivation Dynamics for Improved Emissions Prediction,” SAE Paper 2003-01-0999, SAE International ( 2003 ).en_US
dc.identifier.citedreferenceGlielmo, L. and S. Santini, “A Two-Time-Scale Infinite-Adsorption Model of Three Way Catalytic Converters during the Warm-up Phase,” ASME J. Dyn. Syst. Meas. Contr., Vol. 123, pp. 62 – 70 ( 2001 ).en_US
dc.identifier.citedreferenceGrizzle, J.W., J.A. Cook, and W.P. Milam, “Improved Transient Air-Fuel Ratio Control Using an Air Charge Estimator,” Proc. Amer. Contr. Conf., Baltimore MD ( 1994 ).en_US
dc.identifier.citedreferenceFozo, S.R. and C.F. Aquino, “Transient A/F Characteristics for Cold Operation of 1.6 Liter Engine with Sequential Fuel Injection,” SAE Paper 880691, SAE International ( 1988 ).en_US
dc.identifier.citedreferenceMoraal, P., D. Meyer, J. Cook, E. Rychlick, “Adaptive Transient Fuel Compensation: Implementation and Experimental Results,” SAE Paper 2000-01-0550, SAE International ( 2000 ).en_US
dc.identifier.citedreferenceShulman, M.A. and D.R. Hamburg, “Non-Ideal Properties of ZrO 2 and TiO 2 Exhaust Gas Oxygen Sensors,” SAE Paper 800018, SAE International ( 1980 ).en_US
dc.identifier.citedreferenceGrizzle, J.W., K. Dobbins, and J. Cook, “Individual Cylinder Air-Fuel Ratio Control with a Single EGO Sensor,” IEEE Trans. Veh. Technol., Vol. 40, No. 1, pp. 280 – 286 ( 1991 ).en_US
dc.identifier.citedreferenceMoraal, P., J.A. Cook, and J.W. Grizzle, “Single Sensor Individual Cylinder Control for an Eight Cylinder Engine with Exhaust Gas Mixing,” Proc. Amer. Contr. Conf., San Francisco, CA ( 1993 ).en_US
dc.identifier.citedreferenceMukundan, R. and F. Garzon, “Electrochemical Sensors for Energy and Transportation,” Electrochem. Soc. Interf., Vol. 13, No. 2, pp. 30 – 35 ( 2004 ).en_US
dc.identifier.citedreferenceAmmann, M., H.P. Geering, C.H. Onder, C.A. Roduner, and E. Shafai, “Adaptive Control of a Three-Way Catalytic Convertor,” Proc. Amer. Contr. Conf., Chicago, IL ( 2000 ).en_US
dc.identifier.citedreferenceVemuri, A.T., “Diagnosis of Sensor Bias Faults,” Proc. Amer. Contr. Conf., San Diego, CA ( 1999 ).en_US
dc.identifier.citedreferenceFiengo, G., J.W. Grizzle, J.A. Cook, and A.Y. Karnik, “Duel-UEGO Active Catalyst Control for Emission Reduction: Design and Experimental Validation,” IEEE Trans. Contr. Syst. Technol., Vol. 13, No. 5, pp. 722 – 734 ( 2005 ).en_US
dc.identifier.citedreferenceAsmus, T.W., “Perspectives on Applications of Variable Valve Timing,” SAE Paper 910445, SAE International ( 1991 ).en_US
dc.identifier.citedreferenceMoriya, Y., A. Watanabe, H. Uda, H. Kawamura, and M. Yoshiuka, “A Newly Developed Intelligent Variable Valve Timing System – Continuously Controlled Cam Phasing as Applied to New 3 Liter Inline 6 Engine,” SAE paper 960579, SAE International ( 1996 ).en_US
dc.identifier.citedreferenceStein, R.A., K.M. Galietti, and T.G. Leone, “Dual Equal VCT – A Variable Camshaft Timing Strategy for Improved Fuel Economy and Emissions,” SAE Paper 950975, SAE International ( 1995 ).en_US
dc.identifier.citedreferenceStefanopoulou, A.G., J.A. Cook, J.W. Grizzle, and J.S. Freudenberg, “Control Oriented Model of a Dual Equal Variable Cam Timing Spark Ignition Engine,” ASME J. Dyn. Syst. Meas. Contr., Vol. 120, No. 2, pp. 257 – 266 ( 1998 ).en_US
dc.identifier.citedreferenceJankovic, M., F. Frischmuth, A.G. Stefanopoulou, and J.A. Cook, “Torque Management of Engines with Variable Cam Timing,” IEEE Contr. Syst. Mag., Vol. 18, No. 5, pp. 34 – 42 ( 1998 ).en_US
dc.identifier.citedreferenceWatson, N. and M.S. Janota, Turbocharging the Internal Combustion Engine, Wiley-Interscience Division ( 1982 ).en_US
dc.identifier.citedreferenceLake, T., J. Stokes, R. Murphy, R. Osborne, and A. Schamel, “Turbocharging Concepts for Downsized DI Gasoline Engines,” SAE Paper 2004-01-0036, SAE International ( 2004 ).en_US
dc.identifier.citedreferenceRohde, S. and M. Philipp, “Combined Boost Pressure and Knock Control System for S.I. Engines Including 3-D Maps for Control Parameters,” SAE Paper 890459, SAE International ( 1989 ).en_US
dc.identifier.citedreferenceKarnik, A., J. Buckland, and J. Freudenberg, “Electronic Throttle and Wastegate Control for Turbocharged Gasoline Engines,” Proc. Amer. Contr. Conf., Portland, OR ( 2005 ).en_US
dc.identifier.citedreferenceLezhnev, L., I. Kolmanovsky, and J. Buckland, “Boosted Gasoline Direct Injection Engines: Comparison of Throttle and VGT Controllers for Homogeneous Charge Operation,” SAE Paper 2002-01-0709, SAE International ( 2002 ).en_US
dc.identifier.citedreferenceWakeman, R. and J. Wright, “Closed Loop Turbocharger Control with Transient Wastegate Functions,” SAE Paper 860487, SAE International ( 1986 ).en_US
dc.identifier.citedreferenceZurlo, J., E. Reinbold, and J. Mueller, “The Waukesha Turbocharger Control Module: A Tool for Improved Engine Efficiency and Response,” ASME Fall Tech. Conf., V. 27–4, pp. 35 – 40 ( 1996 ).en_US
dc.identifier.citedreferenceStefanopoulou, A.G., I. Kolmonovsky, and J.S. Freudenberg, “Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions,” IEEE Trans. Contr. Syst. Technol., Vol. 8, No. 4, pp. 733 – 745 ( 2000 ).en_US
dc.identifier.citedreferenceJankovic, M., M. Jankovic, and I. Kolmonovsky, “Constructive Lyapunov Control Design for Turbocharged Diesel Engines,” IEEE Trans. Contr. Syst. Technol., Vol. 8, No. 2, pp. 288 – 299 ( 2000 ).en_US
dc.identifier.citedreferenceDambrosio, L., G. Pascazio, and B. Furtunato, “VGT Turbo-charger Controlled by an Adaptive Technique,” Trans. Mechatron., Vol. 8, No. 4, pp. 492 – 499 ( 2003 ).en_US
dc.identifier.citedreferenceMoraal, P. and I. Kolmonovsky, “Turbocharger Modelling for Automotive Control Applications,” SAE Paper 1999-01-0908, SAE International ( 1999 ).en_US
dc.identifier.citedreferenceFoss, A.M., R.P.G. Heath, P. Heyworth, and J.A. Cook, “Thermodynamic Simulation of a Turbocharged Spark Ignition Engine for Electronic Control Development,” Proc. Inst. Mech. Eng. 7th Int. Conf. Automot. Electron., London, C391/044, pp. 195 – 202 ( 1989 ).en_US
dc.identifier.citedreferenceMuller, M. and E. Hendricks, and S.C. Sorenson, “Mean Value Modeling of Turbocharged Spark Ignition Engine,” SAE Paper 980784, SAE International ( 1998 ).en_US
dc.identifier.citedreferenceEriksson, L., L. Nielsen, J. Brugard, J. BergstrÖm, F. Pettersson, and P. Andersson, “Modelling of a Turbocharged S.I. Engine,” Ann. Rev. Contr., Vol. 26, pp. 129 – 137 ( 2002 ).en_US
dc.identifier.citedreferenceDeur, J., D. Hrovat, and J. Asgari, “Analysis of Mean Value Engine Model with Emphasis on Intake Manifold Thermal Effects,” Proc. IEEE Conf. Contr. Appl., Istanbul, Turkey ( 2003 ).en_US
dc.identifier.citedreferenceFreudenberg, J. and A. Karnik, “Reverse Engineering a Multivariable Controller: A Case Study,” Proc. Amer. Contr. Conf., Portland, OR ( 2005 ).en_US
dc.identifier.citedreferenceZhao, F.Q., M.C. Lai, and D.L. Harrington, “A Review of Mixture Preparation and Combustion Control Strategies for Spark-Ignited Direct Injection Gasoline Engines,” SAE Paper 970627, SAE International ( 1997 ).en_US
dc.identifier.citedreferenceSun, J., I.V. Kolmanovsky, D. Brehob, J.A. Cook, J. Buckland, and M. Haghgooie, “Modeling and Control of Gasoline Direct Injection Stratified Charge Engines,” Proc. IEEE Conf. Contr. Appl., Hawaii, HI, ( 1999 ).en_US
dc.identifier.citedreferenceSun, J., I. Kolmanovsky, J. Dixon, and M. Boesch, “Control of DISI Engines: Analytical and Experimental Investigations,” Proc. 3rd IFAC Workshop Adv. Automot. Contr., Karsruhe, Germany, pp. 249 – 254 ( 2001 ).en_US
dc.identifier.citedreferenceCook, J.A., J. Sun, and J. Grizzle, “Opportunities in Automotive Powertrain Control Applications,” Proc. IEEE 7th Conf. Contr. Appl., Glasgow, UK ( 2002 ).en_US
dc.identifier.citedreferenceWang, Y.Y., S. Raman, and J.W. Grizzle, “Dynamic Modeling of a Lean NO x Trap for Lean Burn Engine Control,” Proc. Amer. Contr. Conf., San Diego, CA ( 1999 ).en_US
dc.identifier.citedreferenceKim, Y.W., J. Sun, I. Kolmanovsky, and J. Koncsol, “A Phenomenological Control-Oriented Lean NO x Trap Model,” J. Fuels Lubric. ( 2004 ).en_US
dc.identifier.citedreferenceKojima, S., N. Baba, S. Matsunaga, K. Senda, K. Katoh and T. Itoh, “Modeling and Numerical Analysis of NO x Storage Reduction Catalysts – On the Two Effects of Rich-Spike Duration,” SAE Paper 2001-01-1297, SAE International ( 2001 ).en_US
dc.identifier.citedreferenceDruzhinina, M., I.V. Kolmanovsky, and J. Sun, “Hybrid Control of a Gasoline Direct Injection Engine,” Proc. 1999 IEEE Conf. Decis. Contr., Phoenix, AZ ( 1999 ).en_US
dc.identifier.citedreferenceKolmanovsky, I.V., M. Druzhinina, and J. Sun, “Speed-Gradient Approach to Torque and Air-to-Fuel Ratio Control in DISC Engines,” IEEE Trans. Contr. Syst. Technol., Vol. 10, No. 5, pp. 671 – 678 ( 2002 ).en_US
dc.identifier.citedreferenceBemporad, A., N. Giorgetti, I. Kolmanovsky, and D. Hrovat, “A Hybrid System Approach to Modeling and Optimal Control of DISC Engines,” Proc, 41st IEEE Conf. Decis. Contr., Las Vegas, Nevada, USA, pp. 1582 – 1587 ( 2002 ).en_US
dc.identifier.citedreferenceKolmanovsky, I., J. Sun, and L.Y. Wang, “Coordinated Control of Lean Burn Engines with Continuously Variable Transmissions,” Proc. Amer. Contr. Conf., San Diego, CA ( 1999 ).en_US
dc.identifier.citedreferenceGrizzle, J.W., J.H. Buckland, and J. Sun, “Idle Speed Control for a Direct Injection Spark Ignition Stratified Charge Engine,” Int. J. Robust Nonlin. Contr., Vol. 11, No. 11, pp. 1043 – 1072 ( 2001 ).en_US
dc.identifier.citedreferenceAlbertoni, L., A. Balluchi, A. Casavola, C. Gambelli, E. Mosca, and A.L. Sangiovanni-Vincentelli, “Hybrid Command Governors for Idle Speed Control in Gasoline Direct Injection Engines,” Proc. Amer. Contr. Conf., Denver, CO ( 2003 ).en_US
dc.identifier.citedreferenceLi, J., J.R. Theis, C.T. Goralski, R.J. Kudla, W.L. Watkins, and R.H. Hurley, “Sulfur Poisoning and Desulfation of the Lean NO x Trap,” SAE Paper 2001-01-2503, SAE International ( 2001 ).en_US
dc.identifier.citedreferenceWang, L.Y., I.V. Kolmanovsky, and J. Sun, “On-Line Identification and Adaptation of LNT Models for Improved Emission Control in Lean Burn Automotive Engines,” Proc. Amer. Contr. Conf., Chicago, IL ( 2000 ).en_US
dc.identifier.citedreferenceSun, J., Y.W. Kim, and L.Y. Wang, “Aftertreatment Control and Adaptation for Automotive Lean Burn Engines with HEGO Sensors,” Int. J. Signal Proces. Adapt. Contr., Vol. 18, No. 2, pp 145 – 166 ( 2004 ).en_US
dc.identifier.citedreferenceKang, J.M., I.V. Kolmanovsky and J.W. Grizzle, “Dynamic Optimization of Lean Burn Engine Aftertreatment,” ASME J. Dyn. Syst. Meas. Contr., Vol. 123, No. 2 ( 2001 ).en_US
dc.identifier.citedreferenceKolmanovsky, I., I. Siverguina and B. Lygoe, “Optimization of Powertrain Operating Policies for Feasibility Assessment and Calibration: Stochastic Dynamic Programming Approach,” Proc. Amer. Contr. Conf., Anchorage, AK ( 2002 ).en_US
dc.identifier.citedreferenceKolmanovsky, I. and I. Siverguina, “Feasibility Assessment and Operating Policy Optimization of Automotive Powertrains with Uncertainties Using Game Theory,” Proc. ASME IMECE, New York, IMECE 2001/DSC- 24530 ( 2001 ).en_US
dc.identifier.citedreferenceKim, Y.W., J. Sun, and L.Y. Wang, “Optimization of Lean NO x Trap Control for Fuel Economy and Exhaust Emissions,” Proc. Amer. Contr. Conf., Boston, MA ( 2004 ).en_US
dc.identifier.citedreferenceMoody, J.F., “Variable Geometry Turbocharging with Electronic Control,” SAE Paper 860107, SAE International ( 1986 ).en_US
dc.identifier.citedreferencePage, D.L., “Optimization of the Air/Fuel Ratio for Improved Engine Performance and Reduced Emissions,” SAE Paper 961714, SAE International ( 1996 ).en_US
dc.identifier.citedreferenceGuzzella, L. and A. Amstutz, “Control of Diesel Engines,” IEEE Contr. Syst. Mag., pp. 53 – 71 ( 1998 ).en_US
dc.identifier.citedreferenceKao, M. and J.J. Moskwa, “Turbocharged Diesel Engine Modeling for Nonlinear Engine Control and State Estimation,” Trans. ASME, Vol. 117, pp. 20 – 30 ( 1995 ).en_US
dc.identifier.citedreferenceWatson, N., “Dynamic Turbocharged Diesel Engine Simulator for Electronic Control System Development,” J. Dyn. Syst. Meas. Contr., Vol. 106, pp. 27 – 45 ( 1984 ).en_US
dc.identifier.citedreferenceBrace, C.J., M. Deacon, N.D. Vaughan, S.J. Charlton and C.R. Burrows, “Prediction of Emissions from a Turbocharged Passenger Car Diesel Engine Using a Neural Network,” Proc. IMechE, Paper C484/046 ( 1994 ).en_US
dc.identifier.citedreferenceRachid, A., A. Liazid, and J.C. Champoussin, “Nonlinear Modelling of a Turbocharged Diesel Engine,” Proc. 3rd IEEE Conf. Contr. Appl., Scotland, UK ( 1994 ).en_US
dc.identifier.citedreferenceDovifaaz, X., M. Oulandsine, A. Rachid, and G. Bloch, “Neural Modeling for Diesel Engine Control,” Proc. 15th Triennial World Cong., Barcelona, Spain ( 2002 ).en_US
dc.identifier.citedreferenceKolmanovsky, I., P. Moraal, M. van Nieuwstadt and A. Stefanopoulou, “Issues in Modelling and Control of Intake Flow in Variable Geometry Turbocharged Engines,” Systems Modelling and Optimization, Proc. 18th IFIP TC7 Conf., Detroit, MI, USA (1997); Polis. M.P., et al. Eds., Chapman and Hall/CRC, Chapman Hall/CRC Research Notes in Mathematics, Vol. 396, pp. 436 – 445 ( 1999 ).en_US
dc.identifier.citedreferencevan Nieuwstadt, M. and I. Kolmanovsky, “Detecting and Correcting Cylinder Imbalance in Direct Injection Engines,” J. Dyn. Syst. Meas. Contr., Vol. 123, pp. 413 – 424 ( 2001 ).en_US
dc.identifier.citedreferenceYang, M. and S.C. Sorenson, “Survey of the Electronic Injection and Control of Diesel Engines,” SAE Paper 940378, SAE International ( 1994 ).en_US
dc.identifier.citedreferenceRobert Bosch, GmbH, R.B., Diesel-Engine Management, 3rd Ed., Society of Automotive Engineers ( 2004 ).en_US
dc.identifier.citedreferenceKolmanovsky, I., M. van Nieuwstadt, and P. Moraal, “Optimal Control of Variable Geometry Turbocharged Diesel Engines with Exhaust Gas Recirculation,” Proc. ASME Dyn. Syst. Contr. Division, DSC-Vol. 67, pp. 265 – 273 ( 1999 ); ASME Int. Mechan. Eng. Congress and Exposition, Nashville, Tennessee, November 14–19 (1999).en_US
dc.identifier.citedreferencevan Nieuwstadt, M., P. Moraal, and I. Kolmanovsky, “Sensor Selection for EGR-VGT Control of a Diesel Engine,” Proc. Adv. Vehicle Contr. Safety (AVCS'98), Amiens, France, pp. 228 – 233 ( 1998 ).en_US
dc.identifier.citedreferenceJankovic, M., “Control Design for a Diesel Engine Model with Time Delay,” Proc. 40th IEEE Conf. Decis. Contr., Orlando, Florida ( 2001 ).en_US
dc.identifier.citedreferenceDekker, H.J. and W.L. Sturm, “Simulation and Control of a HD Diesel Engine Equipped with New EGR Technology,” SAE Paper 960871, SAE International ( 1996 ).en_US
dc.identifier.citedreferenceBuratti, R., A. Carlo, E. Lanfranco, and A. Pisoni, “DI Diesel Engine with Variable Geometry Turbocharger (VGT): A Model-Based Boost Pressure Control Strategy,” Meccanica, Vol. 32, pp. 409 – 421 ( 1997 ).en_US
dc.identifier.citedreferenceAmstutz, A. and L.R. Del Re, “EGO Sensor Based Robust Output Control of EGR in Diesel Engines,” IEEE Trans. Contr. Syst. Technol., Vol. 3, No. 1, pp. 39 – 48 ( 1995 ).en_US
dc.identifier.citedreferencevan Nieuwstadt, M., I. Kolmanovsky, P. Moraal, A. Stefanopoulou, and M. Jankovic, “EGR-VGT Control Schemes: Experimental Comparison for a High-Speed Diesel Engine,” IEEE Contr. Syst. Mag., Vol. 20, No. 3, pp. 63 – 79 ( 2000 ).en_US
dc.identifier.citedreferenceAmmann, M., N.P. Fekete, L. Guzzella, and A.H. Glattfelder, “Model-Based Control of the VGT and EGR in a Turbocharged Common-Rail Diesel Engine: Theory and Passenger Car Implementation,” SAE Paper 2003-01-0357, SAE International ( 2003 ).en_US
dc.identifier.citedreferenceLarsen, M. and P. Kokotovic, “Passivation Design for a Turbocharged Diesel Engine Model,” Proc. 37th IEEE Conf. Decis. Contr., Tampa, Florida ( 1998 ).en_US
dc.identifier.citedreferenceUtkin, V.I., H.-C. Chang, I. Kolmanovsky, and J. Cook, “Sliding Mode Control for Variable Geometry Turbocharged Diesel Engines,” Proc. Amer. Contr. Conf., Chicago, Illinois ( 2000 ).en_US
dc.identifier.citedreferenceUpadhyay, D., V.I. Utkin, and G. Rizzoni, “Multivariable Control Design for Intake Flow Regulation of a Diesel Engine Using Sliding Mode,” Proc. 15th Triennial World Cong., Barcelona, Spain ( 2002 ).en_US
dc.identifier.citedreferenceBengea, S., R. DeCarlo, M. Corless, G. Rizzoni, and S. Yurkovich, “A Polytopic System Approach for Gain Scheduled Control of a Diesel Engine,” Proc. 15th Treinn. World Cong, Barcelona, Spain ( 2002 ).en_US
dc.identifier.citedreferenceRuckert, J., B. Kinoo, M. Kruger, A. Schlosser, H. Rake, and S. Pischinger, “Simultaneous Control of Boost Pressure and Exhaust Gas Recirculation in a Passenger Car Diesel Engine,” MTZ Worldwide, Vol. 62, No. 11 ( 2001 ).en_US
dc.identifier.citedreferenceBai, L. and M. Yang, “Coordinated Control of EGR and VNT in Turbocharged Diesel Engine Based on Intake Air Mass Observer,” SAE Paper 2002-01-1292, SAE International ( 2002 ).en_US
dc.identifier.citedreferenceWinterbone, D.E. and S. Jai-In, “The Application of Modern Control Theory to a Turbocharged Diesel Engine Powerplant,” Proc. IMechE: J. Syst. Contr. Eng., Vol. 205, pp. 69 – 83 ( 1991 ).en_US
dc.identifier.citedreferenceDiop, S., P. Moraal, I. Kolmanovsky, and M. van Nieuwstadt, “Intake Oxygen Concentration Estimation for DI Diesel Engines,” Proc. IEEE Int. Conf. Contr. Appl., Vol. 1, pp. 852 – 857, Kohala Coast, Hawaii ( 1999 ).en_US
dc.identifier.citedreferenceStotsky, A. and I. Kolmanovsky, “Application of Input Estimation Techniques to Charge Estimation and Control in Automotive Engines,” IFAC J. Contr. Eng. Pract., Vol. 10, No. 12, pp 1371 – 1383 ( 2002 ).en_US
dc.identifier.citedreferenceStefanopoulou, A., O.F. Storset, and R. Smith, “Pressure and Temperature Based Adaptive Observer of Air Charge for Turbocharged Diesel Engines,” Int. J. Robust Nonlin. Contr., Vol. 14, No. 6, pp. 543 – 560 ( 2004 ).en_US
dc.identifier.citedreferenceAndersson, P. and L. Eriksson, “Air-to-Cylinder Observer on a Turbocharged SI-Engine with Wastegate,” SAE Paper 2001-01-0262, SAE International ( 2001 ).en_US
dc.identifier.citedreferenceAswami, D.J., M.J. van Nieuwstadt, J.A. Cook, and J.W. Grizzle, “Control-Oriented Modeling of a Diesel Active Lean NO x Catalyst Aftertreatment System,” ASME J. Dyn. Syst. Meas. Contr., Vol. 127, No. 11, pp. 1 – 12 ( 2005 ).en_US
dc.identifier.citedreferencevan Nieuwstadt, M. and O. Yanakiev, “A Diesel Lean NO x Trap Model for Control Strategy Verification,” SAE Paper 2004-01-0526, SAE International ( 2004 ).en_US
dc.identifier.citedreferenceMller, W., H. Ischlegel, A. Schfer, N. Hakim, and K. Binder, “Selective Catalytic Reduction — Europe's NO x Reduction Technology,” SAE Paper 2003-01-2304, SAE International ( 2003 ).en_US
dc.identifier.citedreferenceUpadhyay, D. and M. van Nieuwstadt, “Lumped Parameter Model of a SCR Catalyst for Urea Injection Control,” Proc. ASME IMECE, New Orleans ( 2002 ).en_US
dc.identifier.citedreferenceSchr, C.M., C.H. Onder, H.P. Geering, and M. Elsener, “Control of a Urea SCR Catalytic Converter System for a Mobile Heavy Duty Diesel Engine,” SAE Paper 2003-01-0776, SAE International ( 2003 ).en_US
dc.identifier.citedreferencevan Nieuwstadt, M.J., D. Upadhyay, M. Goebelbecker, and W. Ruona, “Experiments in Active Diesel Particulate Filter Regeneration,” SAE Paper 2003-01-3360, SAE International ( 2003 ).en_US
dc.identifier.citedreferenceMoraal, P., Y. Yacoub, U. Christen, B. Carberry, and S.T. Guerin, “Diesel Particulate Filter Regeneration: Control or Calibration?” Proc. IFAC Symp. Adv. Automot. Contr., Salerno, Italy, pp. 363 – 367 ( 2004 ).en_US
dc.identifier.citedreferencePlotkin S., et al., “Hybrid Electric Vehicle Technology Assessment: Methodology, Analytical Issues, and Interim Results,” ANL/ESD/02-2, Center for Transportation Research, Argonne National Laboratory ( 2001 ).en_US
dc.identifier.citedreferenceSantini, D., “Comparison of Cost Effectiveness of (Some of the Many Possible) Hybrid Configurations,” Plug-In HEV Workshop, Proc. 20th Int. Electr. Vehicle Symp. Expos., Long Beach, CA ( 2003 ).en_US
dc.identifier.citedreferenceAbthoffm, J., P. Antony, M. Kramer, and J. Seiler, “The Mercedez-Benz C-Class Series Hybrid,” SAE Paper 981123, SAE International ( 1998 ).en_US
dc.identifier.citedreferenceHayashida, M. and K. Narusawa, “Optimization of Performance and Energy Consumption on Series Hybrid Electric Power System,” SAE Paper 1999-01-0922, SAE International ( 1999 ).en_US
dc.identifier.citedreferenceTate, E.D. and S.P. Boyd, “Finding Ultimate Limits of Performance for Hybrid Electric Vehicles,” SAE Paper 2000-01-3099, SAE International ( 2000 ).en_US
dc.identifier.citedreferenceCho, C.P., W. Wylam, and R. Johnston, “The Integrated Starter Alternator Damper: The First Step Toward Hybrid Electric Vehicles,” SAE Paper 2000-01-1571, SAE International ( 2000 ).en_US
dc.identifier.citedreferenceGale, A. and D. Brigham, “Starter/Alternator Design for Optimized Hybrid Fuel Economy,” SAE Paper 2000-01- C061, SAE International ( 2000 ).en_US
dc.identifier.citedreferenceOgawa, H., M. Matsuki, and T. Eguchi, “Development of a Power Train for the Hybrid Automobile — The Civic Hybrid,” SAE Paper 2003-01-0083, SAE International ( 2003 ).en_US
dc.identifier.citedreferenceMuta, K., M. Yamazaki, and J. Tokieda, “Development of New-Generation Hybrid System THS II — Drastic Improvement of Power Performance and Fuel Economy,” SAE Paper 2004-01-0064, SAE International ( 2004 ).en_US
dc.identifier.citedreferenceHolmes, A.G., D. Klemen, and M.R. Schmidt, “Electrically Variable Transmission with Selective Input Split, Compound Split, Neutral and Reverse Modes,” US Patent No. 6, 527,658 ( 2001 ).en_US
dc.identifier.citedreferenceRizoulis, D., J. Burl, and J. Beard, “Control Strategies for a Series-Parallel Hybrid Electric Vehicle,” SAE Paper 2001-01-1354, SAE International ( 2001 ).en_US
dc.identifier.citedreferenceBaumann, B.M., et al., “Mechatronic Design and Control of Hybrid Electric Vehicles,” IEEE/ASME Trans. Mechatron., Vol. 5, No. 1, pp. 58 – 72 ( 2000 ).en_US
dc.identifier.citedreferenceFarrall, S.D. and R. P. Jones, “Energy Management in an Automotive Electric/Heat Engine Hybrid Powertrain Using Fuzzy Decision Making,” Proc. Int. Symp. Intell. Contr., Chicago, IL ( 1993 ).en_US
dc.identifier.citedreferenceKim, C., E. NamGoong, and S. Lee, “Fuel Economy Optimization for Parallel Hybrid Vehicles with CVT,” SAE Paper 1999-01-1148, SAE International ( 1999 ).en_US
dc.identifier.citedreferencePaganelli, G., G. Ercole, A. Brahma, Y. Guezennec, and G. Rizzoni, “A General Formulation for the Instantaneous Control of the Power Split in Charge-Sustaining Hybrid Electric Vehicles.” Proc. 5th Int. Symp. Adv. Vehicle Contr., Ann Arbor, MI ( 2000 ).en_US
dc.identifier.citedreferenceJohnson, V.H., K.B. Wipke, and D.J. Rausen, “HEV Control Strategy for Real-Time Optimization of Fuel Economy and Emissions,” SAE Paper 2000-01-1543, SAE International ( 2000 ).en_US
dc.identifier.citedreferenceBrahma, A., Y. Guezennec, and G. Rizzoni, “Dynamic Optimization of Mechanical Electrical Power Flow in Parallel Hybrid Electric Vehicles,” Proc. 5th Int. Symp. Adv. Vehicle Contr, Ann Arbor, MI ( 2000 ).en_US
dc.identifier.citedreferenceZoelch, U. and D. Scroeder, “Dynamic Optimization Method for Design and Rating of the Components of a Hybrid Vehicle,” Int. J. Vehicle Design, Vol. 19, No. 1, pp. 1 – 13 ( 1998 ).en_US
dc.identifier.citedreferenceLin, C.-C., H. Peng, J.W. Grizzle, J. Liu, and M. Busdiecker, “Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck,” Int. Truck Bus Meet. Exhib., Fort Worth, TX, SAE Paper 2003-01-3369, SAE International ( 2003 ).en_US
dc.identifier.citedreferenceLin, C.-C., H. Peng, J.W. Grizzle, and J. Kang, “Power Management Strategy for a Parallel Hybrid Electric Truck,” IEEE Trans. Contr. Syst. Technol., Vol. 11, pp. 839 – 849 ( 2003 ).en_US
dc.identifier.citedreferenceLin, C.-C., H. Peng, and J.W. Grizzle, “A Stochastic Control Strategy for Hybrid Electric Vehicles,” Proc. Amer. Contr. Conf., Boston, MA ( 2004 ).en_US
dc.identifier.citedreferenceBertsekas, D.P., Dynamic Programming and Optimal Control, Athena Scientific ( 1995 ).en_US
dc.identifier.citedreferenceYang, W.C., B. Bates, N. Fletcher, and R. Pow, “Control Challenges and Methodologies in Fuel Cell Vehicle Development,” SAE Paper 98C054, SAE International ( 1998 ).en_US
dc.identifier.citedreferenceStefanopoulou, A.G., “Mechatronics in Fuel Cell Systems,” Proc. IFAC Symp. Mechatron., Sydney ( 2004 ).en_US
dc.identifier.citedreferencePukrushpan, J.T., A.G. Stefanopoulou, and H. Peng, Control of Fuel Cell Power Systems: Principles, Modeling, Analysis, and Feedback Design, Springer Verlag ( 2004 ).en_US
dc.identifier.citedreferenceBoettner, D.D., G. Paganelli, Y.G. Guezennec, G. Rizzoni, and M.J. Moran, “Proton Exchange Membrane (PEM) Fuel Cell System Model for Automotive Vehicle Simulation and Control,” Proc. ASME Int. Mech. Eng. Cong. Expos. ( 2001 ).en_US
dc.identifier.citedreferenceEborn, J., L. Pedersen, C. Haugstetter, and S. Ghosh, “System Level Dynamic Modeling of Fuel Cell Power Plants,” Proc. Amer. Contr. Conf., Denver, CO ( 2003 ).en_US
dc.identifier.citedreferenceGelfi, S., A.G. Stefanopoulou, J. Pukrushpan, and H. Peng, “Dynamics and Control of Low and High Pressure Fuel Cells,” Proc. Amer. Contr. Conf., Denver, CO ( 2003 ).en_US
dc.identifier.citedreferencePukrushpan, J.T., A.G. Stefanopoulou, S. Varigonda, L.M. Pedersen, S. Ghosh, and H. Peng, “Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Applications,” Proc. Amer. Contr. Conf., Denver, CO ( 2003 ).en_US
dc.identifier.citedreferenceTsourapas, V., J. Sun, and A.G. Stefanopoulou, “Modeling and Dynamics of a Fuel Cell Combined Heat Power System for Marine Applications,” Proc. 8th WSEAS Int. Conf. Syst. ( 2004 ).en_US
dc.identifier.citedreferenceMcKay, D.A. and A.G. Stefanopoulou, “Parameterization and Validation of a Lumped Parameter Diffusion Model for Fuel Cell Stack Membrane Humidity Estimation,” Proc. Amer. Contr. Conf., Boston, MA ( 2004 ).en_US
dc.identifier.citedreferenceOkada, T., G. Xie, and M. Meeg, “Simulation for Water Management in Membranes for Polymer Electrolyte Fuel Cells,” Electrochimica Acta, Vol. 43, No. 14–15, pp. 2141 – 2155 ( 1998 ).en_US
dc.identifier.citedreferenceChen, D. and H. Peng, “Modeling and Analysis of PEM Fuel Cell Humidifiers,” Proc. ASME Int. Mech. Eng. Cong. Expos., Anaheim, California, USA, IMECE2004-60029 ( 2004 ).en_US
dc.identifier.citedreferenceWang, C.Y., “Fundamental Models for Fuel Cell Engineering,” Chem. Rev. ( 2004 ).en_US
dc.identifier.citedreferenceSun, J. and I. Kolmanovsky, “A Robust Load Governor for Fuel Cell Oxygen Starvation Protection,” IEEE Trans. Contr. Syst. Technol., Vol. 13, No. 6, pp. 911 – 920 ( 2005 ).en_US
dc.identifier.citedreferenceVahidi, A., A.G. Stefanopoulou, and H. Peng, “Model Predictive Control for Starvation Prevention in a Hybrid Fuel Cell System,” Proc. Amer. Contr. Conf., Boston, MA ( 2004 ).en_US
dc.identifier.citedreferencePukrushpan, T.J., A.G. Stefanopoulou, and H. Peng, “Controlling Fuel Cell Breathing,” IEEE Contr. Sys. Mag. ( 2004 ).en_US
dc.identifier.citedreferenceGuezennec, Y. and T.Y. Choi, “Supervisory Control of Fuel Cell Vehicles and Its Link to Overall System Efficiency and Low-Level Control Requirements,” Proc. Amer. Contr. Conf., Denver, CO ( 2003 ).en_US
dc.identifier.citedreferenceMatsumoto, T., N. Watanabe, H. Sugiura, and T. Ishikawa, “Development of Fuel Cell Hybrid Vehicle,” SAE Paper 2002-01-0096, SAE International ( 2002 ).en_US
dc.identifier.citedreferenceIshikawa, T., S. Hamaguchi, T. Shimizu, T. Yano, S. Sasaki, K. Kato, M. Ando, and H. Yoshida, “Development of Next Generation Fuel-Cell Hybrid System- Consideration of High Voltage System,” SAE Paper 2004-01-1304, SAE International ( 2004 ).en_US
dc.identifier.citedreferenceOhkawa, A., “Electric Power Control System for a Fuel Cell Vehicle Employing Electric Double-Layer Capacitor,” SAE Paper 2004-01-1006, SAE International ( 2004 ).en_US
dc.identifier.citedreferenceZolot, M., “Dual-Source Energy Storage — Control and Performance Advantages in Advanced Vehicles,” Proc. 20th Electr. Vehicle Symp. ( 2003 ).en_US
dc.identifier.citedreferencePeng, H., M. Kim, C. Lin, and J. Grizzle, “Integrated Dynamic Simulation Model with Supervisory Control Strategy for a PEM Fuel Cell Hybrid Vehicle,” Proc. ASME Int. Mech. Eng. Cong. Expos., Anaheim, California, USA, IMECE2004-61775 ( 2004 ).en_US
dc.identifier.citedreferenceArcak, M., H. GÖrgÜn, L.M. Pedersen, and S. Varigonda, “An Adaptive Observer Design for Fuel Cell Hydrogen Estimation,” Proc. Amer. Contr. Conf., Denver, CO ( 2003 ).en_US
dc.identifier.citedreferenceRodatz, P., A. Tsukada, M. Mladek, and L. Guzzella, “Efficiency Improvement by Pulsed Hydrogen Supply in PEM Fuel Cell Systems,” Proc. 15th IFAC World Cong. ( 2002 ).en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.