Show simple item record

Changes in Gene Expression During the Formation of Bioengineered Heart Muscle

dc.contributor.authorKhait, Ludaen_US
dc.contributor.authorBirla, Ravi K.en_US
dc.date.accessioned2010-06-01T18:53:03Z
dc.date.available2010-06-01T18:53:03Z
dc.date.issued2009-01en_US
dc.identifier.citationKhait, Luda; Birla, Ravi K. (2009). "Changes in Gene Expression During the Formation of Bioengineered Heart Muscle." Artificial Organs 33(1): 3-15. <http://hdl.handle.net/2027.42/72077>en_US
dc.identifier.issn0160-564Xen_US
dc.identifier.issn1525-1594en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72077
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19178436&dopt=citationen_US
dc.description.abstractA three-dimensional bioengineered heart muscle (BEHM) construct model had been previously developed, exhibiting contractile forces up to 800 µN. The interest of this study was to determine gene expression levels of biologic markers involved in calcium-handling between BEHM, cell monolayer, and neonatal heart. Cardiac cells were isolated from one litter of F344 rats and organized into groups ( n  = 5): 4-, 7-, 10-day BEHM and cell monolayer; BEHM was evaluated for cell viability and contractility. Groups were then analyzed for mRNA expression of calcium-handling proteins: myosin heavy chain (MHC) α and β, Sarcoplasmic reticulum Ca++ ATPase (SERCA) 2, phospholamban (PBL), and ryanodine receptor. BEHM exhibited electrically stimulated active force (208 ± 12 µN day 4, 361 ± 22 µN day 7, and 344 ± 29 µN day 10) and no decrease in cell number. Real-time polymerase chain reaction (PCR) showed an increase in gene expression of all calcium-handling proteins in BEHM at 7 and 10 days compared with monolayers, for example, comparing BEHM to monolayer (7 and 10 days, respectively), MHC-α: 2600-fold increase and a 100-fold increase; MHC-β: 70-fold increase at 10 days; ryanodine receptor: 74-fold increase at 10 days; SERCA: 19-fold increase and sixfold increase; PBL: 158-fold increase and 24-fold increase. It was concluded that a three-dimensional environment is a better culturing condition of cardiac cells than a monolayer. Also, BEHM constructs demonstrated a high similarity to a native myocardium, and is, thus, a good starting foundation for engineered heart muscle. en_US
dc.format.extent511900 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rightsJournal compilation © 2009 The International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.en_US
dc.subject.otherReal-time Polymerase Chain Reactionen_US
dc.subject.otherTissue Engineeringen_US
dc.subject.otherCardiac Myocytesen_US
dc.subject.otherFibrinogen/Fibrinen_US
dc.subject.otherActive Forceen_US
dc.subject.otherMyosin Heavy Chainen_US
dc.subject.otherSarcoplasmic Reticulum Ca++ ATPaseen_US
dc.subject.otherPhospholambanen_US
dc.subject.otherThree-dimensional Heart Muscleen_US
dc.titleChanges in Gene Expression During the Formation of Bioengineered Heart Muscleen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid19178436en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72077/1/j.1525-1594.2008.00669.x.pdf
dc.identifier.doi10.1111/j.1525-1594.2008.00669.xen_US
dc.identifier.sourceArtificial Organsen_US
dc.identifier.citedreferenceFuchs JR, Nasseri BA, Vacanti JP. Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg 2001; 72: 577 – 91.en_US
dc.identifier.citedreferenceLysaght MJ, Reyes J. The growth of tissue engineering. Tissue Eng 2001; 7: 485 – 93.en_US
dc.identifier.citedreferenceGoldstein DJ, Smego D, Michler RE. Surgical aspects of congestive heart failure. Heart Fail Rev 2006; 11: 171 – 92.en_US
dc.identifier.citedreferenceCarrier L, Papadaki M, Rupnick M, et al. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 1999; 64: 580 – 9.en_US
dc.identifier.citedreferenceLeor J, Aboulafia-Etzion S, Dar A, et al. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 2000; 102 ( Suppl 3 ): III56 – 61.en_US
dc.identifier.citedreferenceLi R, Yau TM, Weisel RD, et al. Construction of a bioengineered cardiac graft. J Thorac Cardiovasc Surg 2000; 119: 368 – 75.en_US
dc.identifier.citedreferenceShapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials 1997; 18: 583 – 90.en_US
dc.identifier.citedreferenceHuang YC, Khait L, Birla RK. Contractile three-dimensional bioengineered heart muscle for myocardial regeneration. J Biomed Mater Res A 2007; 80: 719 – 31.en_US
dc.identifier.citedreferenceLaver DR. Regulation of ryanodine receptors from skeletal and cardiac muscle during rest and excitation. Clin Exp Pharmacol Physiol 2006; 33: 1107 – 13.en_US
dc.identifier.citedreferenceTada M, Toyofuku T. SR Ca(2+)-ATPase/phospholamban in cardiomyocyte function. J Card Fail 1996; 2 ( Suppl ): S77 – 85.en_US
dc.identifier.citedreferenceFujii J, Lytton J, Tada M, MacLennan DH. Rabbit cardiac and slow-twitch muscle express the same phospholamban gene. FEBS Lett 1988; 227: 51 – 5.en_US
dc.identifier.citedreferenceJames P, Inui M, Tada M, Chiesi M, Carafoli E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 1989; 342: 90 – 2.en_US
dc.identifier.citedreferenceKirchberger MA, Tada M. Effects of adenosine 3′:5′-monophosphate-dependent protein kinase on sarcoplasmic reticulum isolated from cardiac and slow and fast contracting skeletal muscles. J Biol Chem 1976; 251: 725 – 9.en_US
dc.identifier.citedreferenceTada M, Kirchberger MA, Repke DI, Katz AM. The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 1974; 249: 6174 – 80.en_US
dc.identifier.citedreferenceHarrington WF, Rodgers ME. Myosin. Annu Rev Biochem 1984; 53: 35 – 73.en_US
dc.identifier.citedreferenceEisenberg E, Greene LE. The relation of muscle biochemistry to muscle physiology. Annu Rev Physiol 1980; 42: 293 – 309.en_US
dc.identifier.citedreferenceSwynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 1986; 66: 710 – 71.en_US
dc.identifier.citedreferenceHoh JF, McGrath PA, Hale PT. Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol 1978; 10: 1053 – 76.en_US
dc.identifier.citedreferenceMorkin E. Control of cardiac myosin heavy chain gene expression. Microsc Res Tech 2000; 50: 522 – 31.en_US
dc.identifier.citedreferenceBoluyt M, Zheng JS, Younes A, et al. Rapamycin inhibits alpha 1-adrenergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes. Evidence for involvement of p70 S6 kinase. Circ Res 1997; 81: 176 – 86.en_US
dc.identifier.citedreferenceDennis RG, Kosnik PE2 nd. Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim 2000; 36: 327 – 35.en_US
dc.identifier.citedreferenceHuang YC, Dennis RG, Larkin L, Baar K. Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol 2005; 98: 706 – 13.en_US
dc.identifier.citedreferenceBaar K, Birla R, Boluyt MO, Borschel GH, Arruda EM, Dennis RG. Self-organization of rat cardiac cells into contractile 3-D cardiac tissue. FASEB J 2005; 19: 275 – 7.en_US
dc.identifier.citedreferenceLyons GE, Schiaffino S, Sassoon D, Barton P, Buckingham M. Developmental regulation of myosin gene expression in mouse cardiac muscle. J Cell Biol 1990; 111: 2427 – 36.en_US
dc.identifier.citedreferenceKurabayashi M, Tsuchimochi H, Komuro I, Takaku F, Yazaki Y. Molecular cloning and characterization of human cardiac alpha- and beta-form myosin heavy chain complementary DNA clones. Regulation of expression during development and pressure overload in human atrium. J Clin Invest 1988; 82: 524 – 31.en_US
dc.identifier.citedreferenceEverett AW. Isomyosin expression in human heart in early pre- and post-natal life. J Mol Cell Cardiol 1986; 18: 607 – 15.en_US
dc.identifier.citedreferenceOjamaa K, Kenessey A, Klein I. Thyroid hormone regulation of phospholamban phosphorylation in the rat heart. Endocrinology 2000; 141: 2139 – 44.en_US
dc.identifier.citedreferenceKoss KL, Grupp IL, Kranias EG. The relative phospholamban and SERCA2 ratio: a critical determinant of myocardial contractility. Basic Res Cardiol 1997; 92 ( Suppl 1 ): 17 – 24.en_US
dc.identifier.citedreferencePetersen MC, Lazar J, Jacob HJ, Wakatsuki T. Tissue engineering: a new frontier in physiological genomics. Physiol Genomics 2007; 32: 28 – 32.en_US
dc.identifier.citedreferenceHecker L, Birla RK. Engineering the heart piece by piece: state of the art in cardiac tissue engineering. Regen Med 2007; 2: 125 – 44.en_US
dc.identifier.citedreferenceKofidis T, Balsam L, de Bruin J, Robbins RC. Distinct cell-to-fiber junctions are critical for establishment of cardiotypical phenotype in a 3D bioartificial environment. Med Eng Phys 2004; 26: 157 – 63.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.