Show simple item record

Co-operative Versus Independent Transport of Different Cargoes by Kinesin-1

dc.contributor.authorHammond, Jennetta Watsonen_US
dc.contributor.authorGriffin, Kellyen_US
dc.contributor.authorJih, Gloria T.en_US
dc.contributor.authorStuckey, Jeanne A.en_US
dc.contributor.authorVerhey, Kristen J.en_US
dc.date.accessioned2010-06-01T18:56:45Z
dc.date.available2010-06-01T18:56:45Z
dc.date.issued2008-05en_US
dc.identifier.citationHammond, Jennetta W.; Griffin, Kelly; Jih, Gloria T.; Stuckey, Jeanne; Verhey, Kristen J. (2008). "Co-operative Versus Independent Transport of Different Cargoes by Kinesin-1." Traffic 9(5): 725-741. <http://hdl.handle.net/2027.42/72137>en_US
dc.identifier.issn1398-9219en_US
dc.identifier.issn1600-0854en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72137
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18266909&dopt=citationen_US
dc.format.extent1418625 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 Blackwell Publishing Ltden_US
dc.subject.otherCargoen_US
dc.subject.otherJIPen_US
dc.subject.otherJNKen_US
dc.subject.otherKinesinen_US
dc.subject.otherMicrotubuleen_US
dc.subject.otherTPRen_US
dc.subject.otherTransporten_US
dc.titleCo-operative Versus Independent Transport of Different Cargoes by Kinesin-1en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.identifier.pmid18266909en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72137/1/j.1600-0854.2008.00722.x.pdf
dc.identifier.doi10.1111/j.1600-0854.2008.00722.xen_US
dc.identifier.sourceTrafficen_US
dc.identifier.citedreferenceCaviston JP, Holzbaur EL. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 2006; 16: 530 – 537.en_US
dc.identifier.citedreferenceHirokawa N, Takemura R. Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 2005; 6: 201 – 214.en_US
dc.identifier.citedreferenceGunawardena S, Goldstein LS. Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J Neurobiol 2004; 58: 258 – 271.en_US
dc.identifier.citedreferenceAdio S, Reth J, Bathe F, Woehlke G. Regulation mechanisms of Kinesin-1. J Muscle Res Cell Motil 2006; 27: 153 – 160.en_US
dc.identifier.citedreferenceGindhart JG. Towards an understanding of kinesin-1 dependent transport pathways through the study of protein-protein interactions. Brief Funct Genomic Proteomic 2006; 5: 74 – 86.en_US
dc.identifier.citedreferenceGyoeva FK, Bybikova EM, Minin AA. An isoform of kinesin light chain specific for the Golgi complex. J Cell Sci 2000; 113: 2047 – 2054.en_US
dc.identifier.citedreferenceWozniak MJ, Allan VJ. Cargo selection by specific kinesin light chain 1 isoforms. EMBO J 2006; 25: 5457 – 5468.en_US
dc.identifier.citedreferenceD’Andrea LD, Regan L. TPR proteins: the versatile helix. Trends Biochem Sci 2003; 28: 655 – 662.en_US
dc.identifier.citedreferenceMain ER, Xiong Y, Cocco MJ, D’Andrea L, Regan L. Design of stable alpha-helical arrays from an idealized TPR motif. Structure 2003; 11: 497 – 508.en_US
dc.identifier.citedreferenceCliff MJ, Harris R, Barford D, Ladbury JE, Williams MA. Conformational diversity in the TPR domain-mediated interaction of protein phosphatase 5 with Hsp90. Structure 2006; 14: 415 – 426.en_US
dc.identifier.citedreferenceGatto GJ Jr, Geisbrecht BV, Gould SJ, Berg JM. Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Biol 2000; 7: 1091 – 1095.en_US
dc.identifier.citedreferenceScheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 2000; 101: 199 – 210.en_US
dc.identifier.citedreferenceLapouge K, Smith JS, Walker AP, Gamblin JS, Smerdon JS, Rittinger K. Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell 2000; 6: 899 – 907.en_US
dc.identifier.citedreferenceCoates JC. Armadillo repeat proteins: beyond the animal kingdom. Trends Cell Biol 2003; 13: 463 – 471.en_US
dc.identifier.citedreferenceKobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 2001; 11: 725 – 732.en_US
dc.identifier.citedreferenceLi J, Mahajan A, Tsai MD. Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry 2006; 45: 15168 – 15178.en_US
dc.identifier.citedreferenceYaffe MB. How do 14-3-3 proteins work? – gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 2002; 513: 53 – 57.en_US
dc.identifier.citedreferenceBowman AB, Kamal A, Ritchings BW, Philp AV, McGrail M, Gindhart JG, Goldstein LS. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 2000; 103: 583 – 594.en_US
dc.identifier.citedreferenceByrd DT, Kawasaki M, Walcoff M, Hisamoto N, Matsumoto K, Jin Y. UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 2001; 32: 787 – 800.en_US
dc.identifier.citedreferenceVerhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA, Margolis B. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol 2001; 152: 959 – 970.en_US
dc.identifier.citedreferenceWhitmarsh AJ. The JIP family of MAPK scaffold proteins. Biochem Soc Trans 2006; 34: 828 – 832.en_US
dc.identifier.citedreferenceKelkar N, Standen CL, Davis RJ. Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol Cell Biol 2005; 25: 2733 – 2743.en_US
dc.identifier.citedreferenceNguyen Q, Lee CM, Le A, Reddy EP. JLP associates with kinesin light chain 1 through a novel leucine zipper-like domain. J Biol Chem 2005; 280: 30185 – 30191.en_US
dc.identifier.citedreferenceHoriuchi D, Barkus RV, Pilling AD, Gassman A, Saxton WM. APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila. Curr Biol 2005; 15: 2137 – 2141.en_US
dc.identifier.citedreferenceHurd DD, Saxton WM. Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Genetics 1996; 144: 1075 – 1085.en_US
dc.identifier.citedreferenceAraki Y, Kawano T, Taru H, Saito Y, Wada S, Miyamoto K, Kobayashi H, Ishikawa HO, Ohsugi Y, Yamamoto T, Matsuno K, Kinjo M, Suzuki T. The novel cargo Alcadein induces vesicle association of kinesin-1 motor components and activates axonal transport. EMBO J 2007; 26: 1475 – 1486.en_US
dc.identifier.citedreferenceBracale A, Cesca F, Neubrand VE, Newsome TP, Way M, Schiavo G. Kidins220/ARMS is transported by a kinesin-1-based mechanism likely to be involved in neuronal differentiation. Mol Biol Cell 2007; 18: 142 – 152.en_US
dc.identifier.citedreferenceMcGuire JR, Rong J, Li SH, Li XJ. Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J Biol Chem 2006; 281: 3552 – 3559.en_US
dc.identifier.citedreferenceIchimura T, Wakamiya-Tsuruta A, Itagaki C, Taoka M, Hayano T, Natsume T, Isobe T. Phosphorylation-dependent interaction of kinesin light chain 2 and the 14-3-3 protein. Biochemistry 2002; 41: 5566 – 5572.en_US
dc.identifier.citedreferenceKamal A, Stokin GB, Yang Z, Xia CH, Goldstein LS. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 2000; 28: 449 – 459.en_US
dc.identifier.citedreferenceKamm C, Boston H, Hewett J, Wilbur J, Corey DP, Hanson PI, Ramesh V, Breakefield XO. The early onset dystonia protein torsinA interacts with kinesin light chain 1. J Biol Chem 2004; 279: 19882 – 19892.en_US
dc.identifier.citedreferenceKimura T, Watanabe H, Iwamatsu A, Kaibuchi K. Tubulin and CRMP-2 complex is transported via Kinesin-1. J Neurochem 2005; 93: 1371 – 1382.en_US
dc.identifier.citedreferenceKonecna A, Frischknecht R, Kinter J, Ludwig A, Steuble M, Meskenaite V, Indermuhle M, Engel M, Cen C, Mateos JM, Streit P, Sonderegger P. Calsyntenin-1 docks vesicular cargo to kinesin-1. Mol Biol Cell 2006; 17: 3651 – 3663.en_US
dc.identifier.citedreferenceWard BM, Moss B. Vaccinia virus A36R membrane protein provides a direct link between intracellular enveloped virions and the microtubule motor kinesin. J Virol 2004; 78: 2486 – 2493.en_US
dc.identifier.citedreferenceReed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 2006; 16: 2166 – 2172.en_US
dc.identifier.citedreferenceChen X, Kojima S, Borisy GG, Green KJ. p120 catenin associates with kinesin and facilitates the transport of cadherin-catenin complexes to intercellular junctions. J Cell Biol 2003; 163: 547 – 557.en_US
dc.identifier.citedreferenceJinek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat Struct Mol Biol 2004; 11: 1001 – 1007.en_US
dc.identifier.citedreferenceCai D, Hoppe AD, Swanson JA, Verhey KJ. Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells. J Cell Biol 2007; 176: 51 – 63.en_US
dc.identifier.citedreferenceKelkar N, Gupta S, Dickens M, Davis RJ. Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol Cell Biol 2000; 20: 1030 – 1043.en_US
dc.identifier.citedreferenceSato S, Ito M, Ito T, Yoshioka K. Scaffold protein JSAP1 is transported to growth cones of neurites independent of JNK signaling pathways in PC12h cells. Gene 2004; 329: 51 – 60.en_US
dc.identifier.citedreferenceKristensen O, Guenat S, Dar I, Allaman-Pillet N, Abderrahmani A, Ferdaoussi M, Roduit R, Maurer F, Beckmann JS, Kastrup JS, Gajhede M, Bonny C. A unique set of SH3-SH3 interactions controls IB1 homodimerization. EMBO J 2006; 25: 785 – 797.en_US
dc.identifier.citedreferenceYasuda J, Whitmarsh AJ, Cavanagh J, Sharma M, Davis RJ. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol Cell Biol 1999; 19: 7245 – 7254.en_US
dc.identifier.citedreferenceBayarsaikhan M, Takino T, Gantulga D, Sato H, Ito T, Yoshioka K. Regulation of N-cadherin-based cell-cell interaction by JSAP1 scaffold in PC12h cells. Biochem Biophys Res Commun 2007; 353: 357 – 362.en_US
dc.identifier.citedreferenceMuresan Z, Muresan V. c-Jun NH2-terminal kinase-interacting protein-3 facilitates phosphorylation and controls localization of amyloid-beta precursor protein. J Neurosci 2005; 25: 3741 – 3751.en_US
dc.identifier.citedreferenceLiu J, Taylor DW, Krementsova EB, Trybus KM, Taylor KA. Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography. Nature 2006; 442: 208 – 211.en_US
dc.identifier.citedreferenceThirumurugan K, Sakamoto T, Hammer JA III, Sellers JR, Knight PJ. The cargo-binding domain regulates structure and activity of myosin 5. Nature 2006; 442: 212 – 215.en_US
dc.identifier.citedreferenceWarren RA, Green FA, Stenberg PE, Enns CA. Distinct saturable pathways for the endocytosis of different tyrosine motifs. J Biol Chem 1998; 273: 17056 – 17063.en_US
dc.identifier.citedreferenceHaucke V. Cargo takes control of endocytosis. Cell 2006; 127: 35 – 37.en_US
dc.identifier.citedreferenceKing SJ, Bonilla M, Rodgers ME, Schroer TA. Subunit organization in cytoplasmic dynein subcomplexes. Protein Sci 2002; 11: 1239 – 1250.en_US
dc.identifier.citedreferenceTynan SH, Purohit A, Doxsey SJ, Vallee RB. Light intermediate chain 1 defines a functional subfraction of cytoplasmic dynein which binds to pericentrin. J Biol Chem 2000; 275: 32763 – 32768.en_US
dc.identifier.citedreferenceTai AW, Chuang JZ, Sung CH. Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport. J Cell Biol 2001; 153: 1499 – 1509.en_US
dc.identifier.citedreferenceMok Y-K, Lo KW, Zhang M. Structure of Tctex-1 and Its Interaction with cytoplasmic dynein intermediate chain. J Biol Chem 2001; 276: 14067 – 14074.en_US
dc.identifier.citedreferenceKing SM, Barbarese E, Dillman JF, Benashski SE, Do KT, Patel-King RS, Pfister KK. Cytoplasmic dynein contains a family of differentially expressed light chains. Biochemistry 1998; 37: 15033 – 15041.en_US
dc.identifier.citedreferenceWaetzig V, Zhao Y, Herdegen T. The bright side of JNKs-multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration. Prog Neurobiol 2006; 80: 84 – 97.en_US
dc.identifier.citedreferenceMuresan Z, Muresan V. Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1. J Cell Biol 2005; 171: 615 – 625.en_US
dc.identifier.citedreferenceHa HY, Cho IH, Lee KW, Lee KW, Song JY, Kim KS, Yu YM, Lee JK, Song JS, Yang SD, Shin HS, Han PL. The axon guidance defect of the telencephalic commissures of the JSAP1-deficient brain was partially rescued by the transgenic expression of JIP1. Dev Biol 2005; 277: 184 – 199.en_US
dc.identifier.citedreferenceSong JJ, Lee YJ. Cross-talk between JIP3 and JIP1 during glucose deprivation: SEK1-JNK2 and Akt1 act as mediators. J Biol Chem 2005; 280: 26845 – 26855.en_US
dc.identifier.citedreferenceKukekov NV, Xu Z, Greene LA. Direct interaction of the molecular scaffolds POSH and JIP is required for apoptotic activation of JNKs. J Biol Chem 2006; 281: 15517 – 15524.en_US
dc.identifier.citedreferenceVerhey KJ, Rapoport TA. Kinesin carries the signal. Trends Biochem Sci 2001; 26: 545 – 550.en_US
dc.identifier.citedreferenceMagliery TJ, Regan L. Beyond consensus: statistical free energies reveal hidden interactions in the design of a TPR motif. J Mol Biol 2004; 343: 731 – 745.en_US
dc.identifier.citedreferenceVerhey KJ, Lizotte DL, Abramson T, Barenboim L, Schnapp BJ, Rapoport TA. Light chain-dependent regulation of Kinesin’s interaction with microtubules. J Cell Biol 1998; 143: 1053 – 1066.en_US
dc.identifier.citedreferenceWhitmarsh AJ, Davis RJ. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci 1998; 23: 481 – 485.en_US
dc.identifier.citedreferenceMeyer D, Liu A, Margolis B. Interaction of c-Jun amino-terminal kinase interacting protein-1 with p190 rhoGEF and its localization in differentiated neurons. J Biol Chem 1999; 274: 35113 – 35118.en_US
dc.identifier.citedreferenceCavalli V, Kujala P, Klumperman J, Goldstein LS. Sunday driver links axonal transport to damage signaling. J Cell Biol 2005; 168: 775 – 787.en_US
dc.identifier.citedreferenceJones TA, Zou JY, Cowan SW, Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 1991; 47: 110 – 119.en_US
dc.identifier.citedreferenceMoore DD. Gene synthesis. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, editors. Current Protocols in Molecular Biology. John Wiley and Sons, Inc. Hoboken, NJ; 2002, pp. 8.2.8 – 8.2.13.en_US
dc.identifier.citedreferenceFromant M, Blanquet S, Plateau P. Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal Biochem 1995; 224: 347 – 353.en_US
dc.identifier.citedreferenceWilson DS, Keefe AD. Random mutagenesis by PCR. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, editors. Current Protocols in Molecular Biology. John Wiley and Sons, Inc. Hoboken, NJ; 2002, pp. 8.3.1 – 8.3.4.en_US
dc.identifier.citedreferenceYu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 2002; 99: 6047 – 6052.en_US
dc.identifier.citedreferenceMatsuguchi T, Masuda A, Sugimoto K, Nagai Y, Yoshikai Y. JNK-interacting protein 3 associates with Toll-like receptor 4 and is involved in LPS-mediated JNK activation. EMBO J 2003; 22: 4455 – 4464.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.