Show simple item record

The Purification of DNA from the Genomes of Paramecium aurelia and Tetrahymena pyriformis 1

dc.contributor.authorAllen, Sally Lymanen_US
dc.contributor.authorGibson, Ianen_US
dc.date.accessioned2010-06-01T18:58:42Z
dc.date.available2010-06-01T18:58:42Z
dc.date.issued1971-08en_US
dc.identifier.citationALLEN, SALLY LYMAN; GIBSON, IAN (1971). "The Purification of DNA from the Genomes of Paramecium aurelia and Tetrahymena pyriformis 1 ." Journal of Eukaryotic Microbiology 18(3): 518-525. <http://hdl.handle.net/2027.42/72169>en_US
dc.identifier.issn1066-5234en_US
dc.identifier.issn1550-7408en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72169
dc.description.abstractMethods are described for the recovery of highly purified DNA from Paramecium aurelia and Tetrahymena pyriformis in high yields. Our DNA is only slightly contaminated with RNA and carbohydrate, and little or no protein can be detected. We could not reduce the RNA (orcinol-positive material) by further treatment (sephadex or hydroxyapatite chromatography and preparative CsCl gradients). At the extreme our DNA is contaminated with 15–20% RNA but the real value is most likely considerably lower than this. The DNA we have prepared from Paramecium and Tetrahymena shows all the properties of double-stranded, high molecular weight DNA when characterized by temperature melting, CsCl density gradient centrifugation and hydroxyapatite and sephadex chromatography. When denatured, it absorbs to nitrocellulose filters. The 2 major results of importance from our work reported here are: (1) There is similarity in base composition of DNA from different syngens of Paramecium (28% G+C for syngens 1, 2, 4, 5, and 9 and 29–30% G+C for syngen 8) while there is variation between the syngens of Tetrahymena (24–31% G+C for syngens 1, 4, 7, 10, 11, and 12); (2) the density of any Paramecium DNA varies depending upon whether the cells are grown in the presence of bacteria or in axenic medium. Our results are compatible with observations previously reported for Tetrahymena but contradict those made for Paramecium . The earlier reports of differences in base composition between syngens of Paramecium are probably due in large part to the use of stocks grown on bacteria.en_US
dc.format.extent897772 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1971 by the Society of Protozoologistsen_US
dc.titleThe Purification of DNA from the Genomes of Paramecium aurelia and Tetrahymena pyriformis 1en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepts. of Botany and Zoology, Univ. of Michigan, Ann Arbor, Mich. 48104, U.S.A. and School of Biological Sciences, Univ. of East Anglia, Norwich, Englanden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72169/1/j.1550-7408.1971.tb03366.x.pdf
dc.identifier.doi10.1111/j.1550-7408.1971.tb03366.xen_US
dc.identifier.sourceJournal of Eukaryotic Microbiologyen_US
dc.identifier.citedreferenceAllen, S. L. & Gibson, I. 1971. Genetics of Tetrahymena, in Elliott, A. M., ed. Biology of Tetrahymena, Appleton, Century, Crofts, Inc., New York ( in press ).en_US
dc.identifier.citedreferenceAllen, S. L. 1971. Genome amplification and gene expression in the ciliate macronucleus. Submitted to Nature.en_US
dc.identifier.citedreferenceBehme, R. 1964. DNA base compositions of several symbionts in. Paramecium aurelia. Genetics 50, 235.en_US
dc.identifier.citedreferenceBernardi, G. 1968. Isolation and characterization of mouse and guinea pig satellite deoxyribonucleic acids. Biochemistry 7, 4373 – 79.en_US
dc.identifier.citedreferenceBritten, R., Pavich, M. & Smith, J. 1969. A new method for DNA purification. Carnegie Inst. Wash. Yearbook 68, 400 – 2.en_US
dc.identifier.citedreferenceBrunk, C. F. & Hanawalt, P. C. 1969. Mitochondrial DNA in Tetrahymena. Exp. Cell Res 54, 143 – 9.en_US
dc.identifier.citedreferenceBurgi, E. & Hershey, A. D. 1963. Sedimentation rate as a measure of molecular weight of DNA. Biophys. J 3, 309 – 21.en_US
dc.identifier.citedreferenceBurton, K. 1968. Determination of DNA concentration with diphenylamine, in Grossman, L. & Moldave, K., eds. Methods in Enzymology, 12B, 163 – 6.en_US
dc.identifier.citedreferenceDische, Z. 1955. Color reactions of nucleic acid components, in Chargeff, E. & Davidson, J. N., eds. The Nucleic Acids 1, 301, Academic Press, New York.en_US
dc.identifier.citedreferenceDryl, S. 1959. Antigenic transformation in Paramecium aurelia after homologous antiserum treatment during autogamy and conjugation. (Abstr.) J. Protozool. 6 ( Suppl. ), 25.en_US
dc.identifier.citedreferenceDubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analyt. Chem 28, 350 – 6.en_US
dc.identifier.citedreferenceFlavell, R. A. & Jones, I. G. 1970. Mitochondrial deoxyribonucleic acid from Tetrahymena pyriformis and its kinetic complexity. Biochem. J 116, 811 – 17.en_US
dc.identifier.citedreferenceHogg, J. F. & Kornberg, H. L. 1963. The metabolism of C 2 -compounds in micro-organisms. 9. Role of the glyoxylate cycle in protozoal glyconeogenesis. Biochem. J 86, 462 – 8.en_US
dc.identifier.citedreferenceKirby, K. S. 1968. Isolation of nucleic acids with phenolic solvents in Grossman, L. & Moldave, K., eds. Methods in Enzymology, 12B, 87 – 99.en_US
dc.identifier.citedreferenceLowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. T. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem 193, 265 – 75.en_US
dc.identifier.citedreferenceMarmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol 3, 208 – 18.en_US
dc.identifier.citedreferenceMarmur, J. & Doty, P. 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5, 109 – 18.en_US
dc.identifier.citedreferenceRyley, J. F. 1952. Studies on the metabolism of the protozoa. 3. Metabolism of the ciliate. Tetrahymena pyriformis (Glaucoma piriformis). Biochem. J 52, 483 – 92.en_US
dc.identifier.citedreferenceSchildkraut, C. L., Marmur, J. & Doty, P. 1962. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol 4, 430 – 43.en_US
dc.identifier.citedreferenceSkinner, D. M., Beattie, W. E., Kerr, M. S. & Graham, D. E. 1970. Satellite DNA in crustacea: Two different components with the same density in neutral CsCl gradients. Nature 227, 837 – 39.en_US
dc.identifier.citedreferenceSmith-Sonneborn, J., Green, L. & Marmur, J. 1963. Deoxyribonucleic acid base composition of kappa and Paramecium aurelia stock 51. Nature 127, 385.en_US
dc.identifier.citedreferenceSoldo, A. T. & Reid, S. J. 1968. Deoxyribonucleic acid of lambda-bearing Paramecium aurelia. J. Protozool. 15 ( Suppl. ), 15.en_US
dc.identifier.citedreferenceSoldo, A. T., Godoy, G. A. & Van Wagtendonk, W. J. 1966. Growth of particle-bearing and particle-free Paramecium aurelia in axenic culture. J. Protozool 13, 492 – 7.en_US
dc.identifier.citedreferenceStorck, R. & Alexopoulos, C. 1970. Deoxyribonucleic acid of fungi. Bact. Rev 34, 126 – 54.en_US
dc.identifier.citedreferenceStudier, W. F. 1965. Sedimentation studies of the size and shape of DNA. J. Mol. Biol 11, 373 – 90.en_US
dc.identifier.citedreferenceSueoka, N. 1961. Compositional correlation between deoxyribonucleic acid and protein. Cold Spring Harbor Symp. Quant. Biol 26, 35 – 43.en_US
dc.identifier.citedreferenceSuyama, Y. 1966. Mitochondrial deoxyribonucleic acid of Tetrahymena. Its partial physical characterization. Biochemistry 5, 2214 – 20.en_US
dc.identifier.citedreferenceSuyama, Y. & Preer, J. R., Jr. 1965. Mitochondrial DNA from protozoa. Genetics 52, 1051 – 58.en_US
dc.identifier.citedreferenceWyatt, G. R. 1951. The purine and pyrimidine content of deoxypentose nucleic acids. Biochem. J 48, 584 – 90.en_US
dc.identifier.citedreferenceYunis, J. J. & Yasmineh, W. G. 1970. Satellite DNA in constitutive heterochromatin of the guinea pig. Science 168, 263 – 65.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.