Show simple item record

Consequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelin

dc.contributor.authorSmith, Charles E.en_US
dc.contributor.authorWazen, Rimaen_US
dc.contributor.authorHu, Yuan Yuanen_US
dc.contributor.authorZalzal, Sylvia F.en_US
dc.contributor.authorNanci, Antonioen_US
dc.contributor.authorSimmer, James P.en_US
dc.contributor.authorHu, Jan C-C.en_US
dc.date.accessioned2010-06-01T19:00:16Z
dc.date.available2010-06-01T19:00:16Z
dc.date.issued2009-10en_US
dc.identifier.citationSmith, Charles E.; Wazen, Rima; Hu, Yuanyuan; Zalzal, Sylvia F.; Nanci, Antonio; Simmer, James P.; Hu, Jan C-C. (2009). "Consequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelin." European Journal of Oral Sciences 117(5): 485-497. <http://hdl.handle.net/2027.42/72194>en_US
dc.identifier.issn0909-8836en_US
dc.identifier.issn1600-0722en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72194
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19758243&dopt=citationen_US
dc.format.extent994643 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 European Journal of Oral Sciencesen_US
dc.subject.otherAmeloblastinen_US
dc.subject.otherEnamelen_US
dc.subject.otherEnamelinen_US
dc.subject.otherKnockouten_US
dc.subject.otherMineralizationen_US
dc.titleConsequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelinen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbsecondlevelOtolaryngologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherLaboratory for the Study of Calcified Tissues and Biomaterials, FacultÉ de MÉdecine Dentaire, UniversitÉ de MontrÉal, Montreal, QC, Canadaen_US
dc.identifier.pmid19758243en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72194/1/j.1600-0722.2009.00666.x.pdf
dc.identifier.doi10.1111/j.1600-0722.2009.00666.xen_US
dc.identifier.sourceEuropean Journal of Oral Sciencesen_US
dc.identifier.citedreferenceSmith CE. Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 1998; 9: 128 – 161.en_US
dc.identifier.citedreferenceGoldberg M, Septier D, LÉcolle S, Chardin H, Quintana MA, Acevedo AC, Gafni G, Dillouya D, Vermelin L, Thonemann B, Schmalz G, Bissila-Mapahou P, Carreau JP. Dentin mineralization. Int J Dev Biol 1995; 39: 93 – 110.en_US
dc.identifier.citedreferenceWiesmann HP, Meyer U, Plate U, HÖhling HJ. Aspects of collagen mineralization in hard tissue formation. Int Rev Cytol 2004; 242: 121 – 156.en_US
dc.identifier.citedreferenceDiekwisch TGH. The developmental biology of cementum. Int J Dev Biol 2001; 45: 695 – 706.en_US
dc.identifier.citedreferenceBartlett JD, Ganss B, Goldberg M, Moradian-Oldak J, Paine ML, Snead ML, Wen X, White SN, Zhou YL. Protein–protein interactions of the developing enamel matrix. Curr Top Dev Biol 2006; 74: 57 – 115.en_US
dc.identifier.citedreferenceHu JC-C, Yamakoshi Y. Enamelin and autosomal-dominant amelogenesis imperfecta. Crit Rev Oral Biol Med 2003; 14: 387 – 398.en_US
dc.identifier.citedreferenceLu Y, Papagerakis P, Yamakoshi Y, Hu JCC, Bartlett JD, Simmer JP. Functions of KLK4 and MMP-20 in dental enamel formation. Biol Chem 2008; 389: 695 – 700.en_US
dc.identifier.citedreferenceBeniash E, Metzler RA, Lam RSK, Gilbert PUPA. Transient amorphous calcium phosphate in forming enamel. J Struct Biol 2009; 166: 133 – 143.en_US
dc.identifier.citedreferenceNanci A, Warshawsky H. Characterization of putative secretory sites on ameloblasts of the rat incisor. Am J Anat 1984; 171: 163 – 189.en_US
dc.identifier.citedreferenceWarshawsky H, Josephsen K, Thylstrup A, Fejerskov O. The development of enamel structure in rat incisors as compared to the teeth of monkey and man. Anat Rec 1981; 200: 371 – 399.en_US
dc.identifier.citedreferenceMoffatt P, Smith CE, St-Arnaud R, Simmons D, Wright JT, Nanci A. Cloning of rat amelotin and localization of the protein to the basal lamina of maturation stage ameloblasts and junctional epithelium. Biochem J 2006; 399: 37 – 46.en_US
dc.identifier.citedreferenceNanci A, Zalzal S, Kogaya Y. Cytochemical characterization of basement membranes in the enamel organ of the rat incisor. Histochemistry 1993; 99: 321 – 331.en_US
dc.identifier.citedreferenceGibson CW, Yuan ZA, Hall B, Longenecker G, Chen EH, Thyagarajan T, Sreenath T, Wright JT, Decker S, Piddington R, Harrison G, Kulkarni AB. Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 2001; 276: 31871 – 31875.en_US
dc.identifier.citedreferenceFukumoto S, Kiba T, Hall B, Iehara N, Nakamura T, Longenecker G, Krebsbach PH, Nanci A, Kulkarni AB, Yamada Y. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol 2004; 167: 973 – 983.en_US
dc.identifier.citedreferenceWazen R, Moffatt P, Zalzal SF, Yamada Y, Nanci A. A mouse model expressing a truncated form of ameloblastin exhibits dental and junctional epithelium defects. Matrix Biol 2009; 28: 292 – 303.en_US
dc.identifier.citedreferenceHu JCC, Hu Y, Smith CE, Mckee MD, Wright JT, Yamakoshi Y, Papagerakis P, Hunter GK, Feng JQ, Yamakoshi F, Simmer JP. Enamel defects and ameloblast-specific expression in Enam knock-out/lacZ knock-in mice. J Biol Chem 2008; 283: 10858 – 10871.en_US
dc.identifier.citedreferenceCaterina JJ, Skobe Z, Shi J, Ding YL, Simmer JP, Birkedal-Hansen H, Bartlett JD. Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 2002; 277: 49598 – 49604.en_US
dc.identifier.citedreferenceSimmer JP, Hu Y, Lertlam R, Yamakoshi Y, Hu JC-C. Hypomaturation enamel defects in Klk4 knockout/lacZ knockin mice. J Biol Chem 2009; 284: 19110 – 19121.en_US
dc.identifier.citedreferenceFong H, White SN, Paine ML, Luo W, Snead ML, Sarikaya M. Enamel structure properties controlled by engineered proteins in transgenic mice. J Bone Miner Res 2003; 18: 2052 – 2059.en_US
dc.identifier.citedreferencePaine ML, Wang HJ, Luo W, Krebsbach PH, Snead ML. A transgenic animal model resembling amelogenesis imperfecta related to ameloblastin overexpression. J Biol Chem 2003; 278: 19447 – 19452.en_US
dc.identifier.citedreferenceMiskin R, Masos T, Shoham Z, Williams-Simons L. Urokinase-type plasminogen activator mRNA is expressed in normal developing teeth and leads to abnormal incisor enamel in alpha MUPA transgenic mice. Transgenic Res 2006; 15: 241 – 254.en_US
dc.identifier.citedreferenceKlopcic B, Maass T, Meyer E, Lehr HA, Metzger D, Chambon P, Mann A, Blessing M. TGF-beta superfamily signaling is essential for tooth and hair morphogenesis and differentiation. Eur J Cell Biol 2007; 86: 781 – 799.en_US
dc.identifier.citedreferenceWen X, Zou Y, Goldberg M, Moats R, Conti PS, Snead ML, Paine ML. Biglycan overexpression on tooth enamel formation in transgenic mice. Anat Rec (Hoboken) 2008; 291: 1246 – 1253.en_US
dc.identifier.citedreferenceGibson CW, Li Y, Daly B, Suggs C, Yuan ZA, Fong H, Simmons D, Aragon M, Kulkarni AB, Wright JT. The leucine-rich amelogenin peptide alters the amelogenin null enamel phenotype. Cells Tissues Organs 2009; 189: 169 – 174.en_US
dc.identifier.citedreferenceBartlett JD, Skobe Z, Lee DH, Wright JT, Li Y, Kulkarni AB, Gibson CW. A developmental comparison of matrix metalloproteinase-20 and amelogenin null mouse enamel. Eur J Oral Sci 2006; 114 ( Suppl 1 ): 18 – 23.en_US
dc.identifier.citedreferenceSire JY, Davit-BÉal T, Delgado S, Gu X. The origin and evolution of enamel mineralization genes. Cells Tissues Organs 2007; 186: 25 – 48.en_US
dc.identifier.citedreferenceSire JY, Delgado S, Girondot M. Hen’s teeth with enamel cap: from dream to impossibility. BMC Evol Biol 2008; 8: 246 – on line.en_US
dc.identifier.citedreferenceDemÉrÉ TA, Mcgowen MR, Berta A, Gatesy J. Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst Biol 2008; 57: 15 – 37.en_US
dc.identifier.citedreferenceSmith CE, Chong DL, Bartlett JD, Margolis HC. Mineral acquisition rates in developing enamel on maxillary and mandibular incisors of rats and mice: implications to extracellular acid loading as apatite crystals mature. J Bone Miner Res 2005; 20: 240 – 249.en_US
dc.identifier.citedreferenceHiller CR, Robinson C, Weatherell JA. Variations in the composition of developing rat incisor enamel. Calcif Tissue Res 1975; 18: 1 – 12.en_US
dc.identifier.citedreferenceNeues F, Epple M. X-ray microcomputer tomography for the study of biomineralized endo- and exoskeletons of animals. Chem Rev 2008; 108: 4734 – 4741.en_US
dc.identifier.citedreferenceDiekwisch TGH, Berman BJ, Gentner S, Slavkin HC. Initial enamel crystals are not spatially associated with mineralized dentine. Cell Tissue Res 1995; 279: 149 – 167.en_US
dc.identifier.citedreferenceNanci A, Zalzal S, Lavoie P, Kunikata M, Chen WY, Krebsbach PH, Yamada Y, HammarstrÖm L, Simmer JP, Fincham AG, Snead ML, Smith CE. Comparative immunochemical analyses of the developmental expression and distribution of ameloblastin and amelogenin in rat incisors. J Histochem Cytochem 1998; 46: 911 – 934.en_US
dc.identifier.citedreferenceBouropoulos N, Moradian-Oldak J. Induction of apatite by the cooperative effect of amelogenin and the 32-kDa enamelin. J Dent Res 2004; 83: 278 – 282.en_US
dc.identifier.citedreferenceMÜller W, Boreiko A, Wang X, Krasko A, Geurtsen W, CustÓdio MR, Winkler T, Lukic-Bilela L, Link T, SchrÖder H. Morphogenetic activity of silica and bio-silica on the expression of genes controlling biomineralization using SaOS-2 cells. Calcif Tissue Int 2007; 81: 382 – 393.en_US
dc.identifier.citedreferenceRisnes S, Moinichen CB, Septier D, Goldberg M. Effects of accelerated eruption on the enamel of the rat lower incisor. Adv Dent Res 1996; 10: 261 – 269.en_US
dc.identifier.citedreferenceKobayashi K, Yamakoshi Y, Hu JCC, Gomi K, Arai T, Fukae M, Krebsbach PH, Simmer JP. Splicing determines the glycosylation state of ameloblastin. J Dent Res 2007; 86: 962 – 967.en_US
dc.identifier.citedreferencePuntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin DMA, Ausiello G, Brannetti B, Costantini A, Ferre F, Maselli V, Via A, Cesareni G, Diella F, Superti-Furga G, Wyrwicz L, Ramu C, Mcguigan C, Gudavalli R, Letunic I, Bork P, Rychlewski L, Kuster B, Helmer-Citterich M, Hunter WN, Aasland R, Gibson TJ. ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 2003; 31: 3625 – 3630.en_US
dc.identifier.citedreferenceLee SK, Kim SM, Lee YJ, Yamada KM, Yamada Y, Chi JC. The structure of the rat ameloblastin gene and its expression in amelogenesis. Mol Cells 2003; 15: 216 – 225.en_US
dc.identifier.citedreferenceLi SSC. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 2005; 390: 641 – 653.en_US
dc.identifier.citedreferenceDiella F, Haslam N, Chica C, Budd A, Michael S, Brown NP, TravÉ G, Gibson TJ. Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci 2008; 13: 6580 – 6603.en_US
dc.identifier.citedreferenceMasuya H, Shimizu K, Sezutsu H, Sakuraba Y, Nagano J, Shimizu A, Fujimoto N, Kawai A, Miura I, Kaneda H, Kobayashi K, Ishijima J, Maeda T, Gondo Y, Noda T, Wakana S, Shiroishi T. Enamelin ( Enam ) is essential for amelogenesis: ENU-induced mouse mutants as models for different clinical subtypes of human amelogenesis imperfecta (AI). Hum Mol Genet 2005; 14: 575 – 583.en_US
dc.identifier.citedreferenceSeedorf H, Klaften M, Eke F, Fuchs H, Seedorf U, Hrabe DE, Angelis M. A mutation in the enamelin gene in a mouse model. J Dent Res 2007; 86: 764 – 768.en_US
dc.identifier.citedreferenceWang HJ, Tannukit S, Zhu DH, Snead ML, Paine ML. Enamel matrix protein interactions. J Bone Miner Res 2005; 20: 1032 – 1040.en_US
dc.identifier.citedreferenceSmith CE, Nanci A. Protein dynamics of amelogenesis. Anat Rec 1996; 245: 186 – 207.en_US
dc.identifier.citedreferenceFukumoto S, Yamada A, Nonaka K, Yamada Y. Essential roles of ameloblastin in maintaining ameloblast differentiation and enamel formation. Cells Tissues Organs 2005; 181: 189 – 195.en_US
dc.identifier.citedreferenceRyan MC, Lee K, Miyashita Y, Carter WG. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J Cell Biol 1999; 145: 1309 – 1323.en_US
dc.identifier.citedreferenceFlenniken AM, Osborne LR, Anderson N, Ciliberti N, Fleming C, Gittens JEI, Gong XQ, Kelsey LB, Lounsbury C, Moreno L, Nieman BJ, Peterson K, Qu DW, Roscoe W, Shao Q, Tong D, Veitch GIL, Voronina I, Vukobradovic I, Wood GA, Zhu YH, Zirngibl RA, Aubin JE, Bai DL, Bruneau BG, Grynpas M, Henderson JE, Henkelman RM, Mckerlie C, Sled JG, Stanford WL, Laird DW, Kidder GM, Adamson SL, Rossant J. A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia. Development 2005; 132: 4375 – 4386.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.