Determination of the physical environment within the Chlamydia trachomatis inclusion using ion-selective ratiometric probes

Show simple item record Grieshaber, Scott en_US Swanson, Joel A. en_US Hackstadt, Ted en_US 2010-06-01T19:03:54Z 2010-06-01T19:03:54Z 2002-05 en_US
dc.identifier.citation Grieshaber, Scott; Swanson, Joel A . ; Hackstadt, Ted (2002). "Determination of the physical environment within the Chlamydia trachomatis inclusion using ion-selective ratiometric probes." Cellular Microbiology 4(5): 273-283. <> en_US
dc.identifier.issn 1462-5814 en_US
dc.identifier.issn 1462-5822 en_US
dc.identifier.uri en_US
dc.description.abstract Chlamydia trachomatis is an obligate intracellular bacterium with a biphasic life cycle that takes place entirely within a membrane-bound vacuole termed an inclusion. The chlamydial inclusion is non-fusogenic with endosomal or lysosomal compartments but intersects a pathway involved in transport of sphingomyelin from the Golgi apparatus to the plasma membrane. The physical conditions within the mature chlamydial inclusion are unknown. We used ratiometric imaging with membrane-permeant, ion-selective fluorescent dyes for microanalyis of the physical environment within the inclusion. Determination of H + , Na + , K + and Ca 2 + concentrations using CFDA (carboxy fluorescein diacetate) or BCECF-AM (2 ′ ,7 ′ -bis (2-carboxyethyl)-5,6-carboxyfluorescein acetoxymethyl ester, SBFI-AM, PBFI-AM and fura-PE3-acetomethoxyester (Fura-PE3-AM), respectively, indicated that all ions assayed within the lumenal space of the inclusion approximated the concentrations within the cytoplasm. Stimulation of purinergic receptors by addition of extracellular ATP triggered a dynamic Ca 2 + response that occurred simultaneously within the cytoplasm and interior of the inclusion. The chlamydial inclusion thus appears to be freely permeable to cytoplasmic ions. These results have implications for nutrient acquisition by chlamydiae and may contribute to the non-fusogenicity of the inclusion with endocytic compartments. en_US
dc.format.extent 487872 bytes
dc.format.extent 3109 bytes
dc.format.mimetype application/pdf
dc.format.mimetype text/plain
dc.publisher Blackwell Science Ltd en_US
dc.rights 2002 Blackwell Science Ltd. en_US
dc.title Determination of the physical environment within the Chlamydia trachomatis inclusion using ion-selective ratiometric probes en_US
dc.type Article en_US
dc.subject.hlbsecondlevel "Molecular, Cellular and Developmental Biology" en_US
dc.subject.hlbtoplevel Health Sciences en_US
dc.description.peerreviewed Peer Reviewed en_US
dc.contributor.affiliationum Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA en_US
dc.identifier.pmid 12027956 en_US
dc.identifier.doi 10.1046/j.1462-5822.2002.00191.x en_US
dc.identifier.source Cellular Microbiology en_US
dc.identifier.citedreference Akporiaye, E.T., Rowatt, J.D., Aragon, A.A., and Baca, O.G. ( 1983 ) Lysosomal response of a murine macrophage-like cell line persistently infected with Coxiella burnetii. Infect Immun 40: 1155 – 1162. en_US
dc.identifier.citedreference Caldwell, H.D., Kromhout, J., and Schachter, J. ( 1981 ) Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31: 1161 – 1176. en_US
dc.identifier.citedreference Cevenini, R., Donati, M., and La Placa, M. ( 1988 ) Effects of penicillin on the synthesis of membrane proteins of Chlamydia trachomatis LGV2 serotype. FEMS Microbiol Lett 56: 41 – 46. en_US
dc.identifier.citedreference Communi, D., and Boeynaems, J.M. ( 1997 ) Receptors responsive to extracellular pyrimidine nucleotides. Trends Pharmacol Sci 18: 83 – 86. en_US
dc.identifier.citedreference Desai, S.A., Krogstad, D.J., and McCleskey, E.W. ( 1993 ) A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature 362: 643 – 646. en_US
dc.identifier.citedreference Friis, R.R. ( 1972 ) Interaction of L cells and Chlamydia psittaci: entry of the parasite and host responses to its development. J Bacteriol 110: 706 – 721. en_US
dc.identifier.citedreference Grynkiewicz, G., Poenie, M., and Tsien, R.Y. ( 1985 ) A new generation of Ca 2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440 – 3450. en_US
dc.identifier.citedreference Gutter, B., Asher, Y., Cohen, Y., and Becker, Y. ( 1973 ) Studies on the developmental cycle of Chlamydia trachomatis: isolation and characterization of the initial bodies. J Bacteriol 115: 691 – 702. en_US
dc.identifier.citedreference Hackstadt, T., and Williams, J.C. ( 1981 ) Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci USA 78: 3240 – 3244. en_US
dc.identifier.citedreference Hackstadt, T., Scidmore, M.A., and Rockey, D.D. ( 1995 ) Lipid metabolism in Chlamydia trachomatis -infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci USA 92: 4877 – 4881. en_US
dc.identifier.citedreference Hackstadt, T., Rockey, D.D., Heinzen, R.A., and Scidmore, M.A. ( 1996 ) Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 15: 964 – 977. en_US
dc.identifier.citedreference Harden, T.K., Lazarowski, E.R., and Boucher, R.C. ( 1997 ) Release, metabolism and interconversion of adenine and uridine nucleotides: implications for G protein-coupled P2 receptor agonist selectivity. Trends Pharmacol Sci 18: 43 – 46. en_US
dc.identifier.citedreference Hart, P.D., Young, M.R., Jordan, M.M., Perkins, W.J., and Geisow, M.J. ( 1983 ) Chemical inhibitors of phagosome-lysosome fusion in cultured macrophages also inhibit saltatory lysosomal movements. A combined microscopic and computer study. J Exp Med 158: 477 – 492. en_US
dc.identifier.citedreference Haugland, R.P. ( 1997 ) Synthesis of Fluorinated Fluoresceins. J Org Chem 62: 6469 – 6475. en_US
dc.identifier.citedreference Heinzen, R.A., and Hackstadt, T. ( 1997 ) The Chlamydia trachomatis parasitophorous vacuolar membrane is not passively permeable to low-molecular-weight compounds. Infect Immun 65: 1088 – 1094. en_US
dc.identifier.citedreference Heinzen, R.A., Scidmore, M.A., Rockey, D.D., and Hackstadt, T. ( 1996 ) Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect Immun 64: 796 – 809. en_US
dc.identifier.citedreference Majeed, M., Krause, K.H., Clark, R.A., Kihlstrom, E., and Stendahl, O. ( 1999 ) Localization of intracellular Ca 2+ stores in HeLa cells during infection with Chlamydia trachomatis. J Cell Sci 112: 35 – 44. en_US
dc.identifier.citedreference Maurin, M., Benoliel, A.M., Bongrand, P., and Raoult, D. ( 1992 ) Phagolysosomes of Coxiella burnetii -infected cell lines maintain an acidic pH during persistent infection. Infect Immun 60: 5013 – 5016. en_US
dc.identifier.citedreference Maxfield, F.R. ( 1989 ) Measurement of vacuolar pH and cytoplasmic calcium in living cells using fluorescence microscopy. Meth Enzymol 173: 745 – 771. en_US
dc.identifier.citedreference Moulder, J.W. ( 1991 ) Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55: 143 – 190. en_US
dc.identifier.citedreference Negulescu, P.A., and Machen, T.E. ( 1990 ) Intracellular ion activities and membrane transport in parietal cells measured with fluorescent dyes. Meth Enzymol 192: 38 – 81. en_US
dc.identifier.citedreference Paemeleire, K., Martin, P.E., Coleman, S.L., Fogarty, K.E., Carrington, W.A., Leybaert, L., et al. ( 2000 ) Intercellular calcium waves in HeLa cells expressing GFP-labeled connexin 43, 32, or 26. Mol Biol Cell 11: 1815 – 1827. en_US
dc.identifier.citedreference Paradiso, A.M., Tsien, R.Y., and Machen, T.E. ( 1984 ) Na + -H + exchange in gastric glands as measured with a cytoplasmic-trapped, fluorescent pH indicator. Proc Natl Acad Sci USA 81: 7436 – 7440. en_US
dc.identifier.citedreference Rink, T.J., Tsien, R.Y., and Pozzan, T. ( 1982 ) Cytoplasmic pH and free Mg 2+ in lymphocytes. J Cell Biol 95: 189 – 196. en_US
dc.identifier.citedreference Schachter, J., Moncada, J., Dawson, C.R., Sheppard, J., Courtright, P., Said, M.E. et al. ( 1988 ) Nonculture methods for diagnosing chlamydial infection in patients with trachoma: a clue to the pathogenesis of the disease? J Infect Dis 158: 1347 – 1352. en_US
dc.identifier.citedreference Schramm, N., Bagnell, C.R., and Wyrick, P.B. ( 1996 ) Vesicles containing Chlamydia trachomatis serovar L2 remain above pH 6 within HEC-1B cells. Infect Immun 64: 1208 – 1214. en_US
dc.identifier.citedreference Schwab, J.C., Beckers, C.J.M., and Joiner, K.A. ( 1994 ) The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. Proc Natl Acad Sci USA 91: 509 – 513. en_US
dc.identifier.citedreference Shaw, E.I., Dooley, C.A., Fischer, E.R., Scidmore, M.A., Fields, K.A., and Hackstadt, T. ( 2000 ) Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol Microbiol 37: 913 – 925. en_US
dc.identifier.citedreference Steinberg, T.H., and Swanson, J.A. ( 1994 ) Measurement of Phagosome-Lysosome Fusion and Phagosomal pH. Methods Enzymol 236: 147 – 160. en_US
dc.identifier.citedreference Thomas, J.A., Buchsbaum, R.N., Zimniak, A., and Racker, E. ( 1979 ) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18: 2210 – 2218. en_US
dc.identifier.citedreference Vorndran, C., Minta, A., and Poenie, M. ( 1995 ) New fluorescent calcium indicators designed for cytosolic retention or measuring calcium near membranes. Biophys J 69: 2112 – 2124. en_US
dc.identifier.citedreference Whitaker, J.E., Haugland, R.P., and Prendergast, F.G. ( 1991 ) Spectral and photophysical studies of benzo[c]xanthene dyes: dual emission pH sensors. Anal Biochem 194: 330 – 344. en_US
dc.identifier.citedreference Zhou, Y., Marcus, E.M., Haugland, R.P., and Opas, M. ( 1995 ) Use of a new fluorescent probe, seminaphthofluorescein-calcein, for determination of intracellular pH by simultaneous dual-emission imaging laser scanning confocal microscopy. J Cell Physiol 164: 9 – 16. en_US
dc.owningcollname Interdisciplinary and Peer-Reviewed
 Show simple item record

This item appears in the following Collection(s)

Search Deep Blue

Advanced Search

Browse by

My Account


Available Now

MLibrary logo