Show simple item record

Nitric Oxide Signaling Triggered by the Rheumatoid Arthritis–Shared Epitope

dc.contributor.authorHoloshitz, Josephen_US
dc.contributor.authorLing, Songen_US
dc.date.accessioned2010-06-01T19:05:04Z
dc.date.available2010-06-01T19:05:04Z
dc.date.issued2007-09en_US
dc.identifier.citationHOLOSHITZ, JOSEPH; LING, SONG (2007). "Nitric Oxide Signaling Triggered by the Rheumatoid Arthritis–Shared Epitope." Annals of the New York Academy of Sciences 1110(1 Autoimmunity, Part B Novel Applications of Basic Research ): 73-83. <http://hdl.handle.net/2027.42/72272>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72272
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17911422&dopt=citationen_US
dc.description.abstractMany immune-mediated diseases are associated with particular MHC class I or class II alleles. In rheumatoid arthritis (RA-shared), the vast majority of patients possess HLA-DRB1 alleles encoding a shared epitope, which is a five–amino acid sequence motif in positions 70–74 of the HLA-DRΒ chain. The mechanistic basis for this association is unknown. Here we discuss recent evidence suggesting that the shared epitope may act as an allele-specific ligand that triggers increased nitric oxide (NO) production in opposite cells with resultant immune dysregulation. We propose that by doing that, the RA-shared shared epitope may form an unintended bridge between the innate and adaptive immune systems, thereby allowing aberrant signaling events that could trigger disease.en_US
dc.format.extent116329 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights2007 New York Academy of Sciencesen_US
dc.subject.otherAutoimmunityen_US
dc.subject.otherMHC–Disease Associationen_US
dc.subject.otherSignal Transductionen_US
dc.titleNitric Oxide Signaling Triggered by the Rheumatoid Arthritis–Shared Epitopeen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.identifier.pmid17911422en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72272/1/annals.1423.009.pdf
dc.identifier.doi10.1196/annals.1423.009en_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceWucherpfennig, K.W. & J.L. Strominger. 1995. Selective binding of self peptides to disease-associated major histocompatibility complex (MHC) molecules: a mechanism for MHC-linked susceptibility to human autoimmune diseases. J. Exp. Med. 181: 1597 – 1601.en_US
dc.identifier.citedreferenceMignot, E. 1998. Genetic and familial aspects of narcolepsy. Neurology 50: S16 – S22.en_US
dc.identifier.citedreferenceDauvilliers, Y. & M. Tafti. 2006. Molecular genetics and treatment of narcolepsy. Ann. Med. 38: 252 – 262.en_US
dc.identifier.citedreferenceSimon, M., M. Bourel, R. Fauchet & B. Genetet. 1976. Association of HLA-A3 and HLA-B14 antigens with idiopathic hemochromatosis. Gut 17: 332 – 334.en_US
dc.identifier.citedreferenceCardoso, C.S. & M. De Sousa. 2003. HFE, the MHC and hemochromatosis: paradigm for an extended function for MHC class I. Tissue Antigens 61: 263 – 275.en_US
dc.identifier.citedreferenceStastny, P. 1976. Mixed lymphocyte cultures in rheumatoid arthritis. J. Clin. Invest. 57: 1148 – 1157.en_US
dc.identifier.citedreferenceGregersen, P.K., J. Silver & R.J. Winchester. 1987. The shared epitope hypothesis: an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rhem. 30: 1205 – 1213.en_US
dc.identifier.citedreferenceOu, D., L.A. Mitchell & A.J. Tingle. 1998. A new categorization of HLA DR alleles on a functional basis. Hum. Immunol. 59: 665 – 676.en_US
dc.identifier.citedreferenceGourraud, P.A., J.F. Boyer, T. Barnetche, et al. 2006. A new classification of HLA-DRB1 alleles differentiates predisposing and protective alleles for rheumatoid arthritis structural severity. Arthritis Rheum. 54: 593 – 599.en_US
dc.identifier.citedreferenceVan Der Helm-van Mil, A.H.M., T.W.J. Huizinga, G.M.T. Schreuder, et al. 2005. An independent role of protective HLA class II alleles in rheumatoid arthritis severity and susceptibility. Arthritis Rheum. 56: 2637 – 2644.en_US
dc.identifier.citedreferenceRuiz-Morales, J.A., G. Vargas-Alarcon, P.O. Flores-Villanueva, et al. 2004. HLA-DRB1 alleles encoding the “shared epitope” are associated with susceptibility to developing rheumatoid arthritis whereas HLA-DRB1 alleles encoding an aspartic acid at position 70 of the Β-chain are protective in Mexican mestizos. Hum. Immunol. 65: 262 – 269.en_US
dc.identifier.citedreferenceLa Cava, A., J.L. Nelson, W.E. Ollier, et al. 1997. Genetic bias in immune responses to a cassette shared by different microorganisms in patients with rheumatoid arthritis. J. Clin. Invest. 100: 658 – 663.en_US
dc.identifier.citedreferenceBhayani, H.R. & S.M. Hedrick. 1991. The role of polymorphic amino acids of the MHC molecule in the selection of the T cell repertoire. J. Immunol. 146: 1093 – 1098.en_US
dc.identifier.citedreferenceWeyand, C.M., N.N. Hunder, K.C. Hicok, et al. 1994. HLA-DRB1 alleles in polymyalgia rheumatica, giant cell arteritis, and rheumatoid arthritis. Arthritis Rheum. 37: 514.en_US
dc.identifier.citedreferenceDoherty, D.G., P.T. Donaldson, J.A. Underhill, et al. 1994. Allelic sequence variation in the HLA class II genes and proteins in patients with autoimmune hepatitis. Hepatology 19: 609 – 615.en_US
dc.identifier.citedreferenceKorendowych, E., J. Dixey, B. Cox, et al. 2003. The influence of the HLA-DRB1 rheumatoid arthritis shared epitope on the clinical characteristics and radiological outcome of psoriatic arthritis. J. Rheumatol. 30: 96 – 101.en_US
dc.identifier.citedreferenceDorak, M.T., H.K. Machulla, M. Hentschel, et al. 1996. Influence of the major histocompatibility complex on age at onset of chronic lymphoid leukaemia. Int. J. Cancer 65: 134 – 139.en_US
dc.identifier.citedreferenceOllier, W.E., L.J. Kennedy, W. Thomson, et al. 2001. Dog MHC alleles containing the human RA shared epitope confer susceptibility to canine rheumatoid arthritis. Immunogenetics 53: 669 – 673.en_US
dc.identifier.citedreferenceRosloniec, E.F., D.D. Brand, L.K. Myers, et al. 1997. An HLA-DR1 transgene confers susceptibility to collagen-induced arthritis elicited with human type II collagen. J. Exp. Med. 185: 1113 – 1122.en_US
dc.identifier.citedreferenceForsthuber, T.G., C.L. Shive, W. Wienhold, et al. 2001. T cell epitopes of human myelin oligodendrocyte glycoprotein identified in HLA-DR4 (DRB1*0401) transgenic mice are encephalitogenic and are presented by human B cells. J. Immunol. 167: 7119 – 7125.en_US
dc.identifier.citedreferenceGonzalez-Gay, M.A., C. Garcia-Porrua & A.H. Hajeer. 2002. Influence of human leukocyte antigen-DRB1 on the susceptibility and severity of rheumatoid arthritis. Semin. Arthritis Rheum. 31: 355 – 360.en_US
dc.identifier.citedreferenceAho, K., K. Markku, J. Tuominen & J. Kaprio. 1986. Occurrence of rheumatoid arthritis in a nationwide series of twins. J. Rheumatol. 13: 899 – 902.en_US
dc.identifier.citedreferenceSilman, A.J., A. MacGregor, W. Thomson, et al. 1993. Twin concordance rates for rheumatoid arthritis: results of a nationwide study. Br. J. Rheumatol. 32: 903 – 907.en_US
dc.identifier.citedreferenceJawaheer, D., W. Thomson, A.J. MacGregor, et al. 1994. “Homozygosity” for the HLA-DR shared epitope contributes the highest risk for rheumatoid arthritis concordance in identical twins. Arthritis Rheum. 37: 681 – 686.en_US
dc.identifier.citedreferenceHajeer, H., J. Worthington, A.J. Silman & W.E.R. Ollier. 1996. Association of tumor necrosis factor microsatellite polymorphism with HLA-DRB1*04-bearing haplotypes in rheumatoid arthritis patients. Arthritis Rheum. 39: 1109 – 1114.en_US
dc.identifier.citedreferenceJarvinen, P & K. Aho. 1994. Twin studies in rheumatic diseases. Semin. Arthritis Rheum. 24: 19 – 28.en_US
dc.identifier.citedreferenceUeda, M., S. Mashiba & K. Uchida. 2002. Evaluation of oxidized Α-1-antitrypsin in blood as an oxidative stress marker using anti-oxidative a1-AT monoclonal antibody. Clin. Chim. Acta 317: 125 – 131.en_US
dc.identifier.citedreferenceSchonland, S.O., C. Lopez, T. Widmann, et al. 2003. Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proc. Natl. Acad. Sci. USA 100: 13471 – 13476.en_US
dc.identifier.citedreferenceBashir, S., G. Harris, M.A. Denman, et al. 1993. Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann. Rheum. Dis. 52: 659 – 666.en_US
dc.identifier.citedreferenceLee, S.H. et al. 2003. Microsatellite instability and suppressed DNA repair enzyme expression in rheumatoid arthritis. J. Immunol. 170: 2214 – 2220.en_US
dc.identifier.citedreferenceGoronzy, J.J. & C.M. Weyand. 2005. Rheumatoid arthritis. Immunol. Rev. 204: 55 – 73.en_US
dc.identifier.citedreferenceHitchon, C.A. & H.S. El-Gabalawy. 2004. Oxidation in rheumatoid arthritis. Arthritis Res. Ther. 6: 265 – 278.en_US
dc.identifier.citedreferenceDonohue, J.F. 2006. Ageing, smoking and oxidative stress. Thorax 61: 461 – 462.en_US
dc.identifier.citedreferencePadyukov, L., C. Silva, P. Stolt, et al. 2004. A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum. 50: 3085 – 3092.en_US
dc.identifier.citedreferenceLing, S., A. Lai, O. Borschukova, et al. 2006. Activation of nitric oxide signaling by the rheumatoid arthritis shared epitope. Arthritis Rheum. 54: 3423 – 3432.en_US
dc.identifier.citedreferenceYki-Jarvinen, H., R. Bergholm & M. Leirisalo-Repo. 2003. Increased inflammatory activity parallels increased basal nitric oxide production and blunted response to nitric oxide in vivo in rheumatoid arthritis. Ann. Rheum. Dis. 62: 630 – 634.en_US
dc.identifier.citedreferenceWang, B., L. Ma, X. Tao & P.E. Lipsky. 2004. Triptolide, an active component of the Chinese herbal remedy Tripterygium wilfordii Hook F, inhibits production of nitric oxide by decreasing inducible nitric oxide synthase gene transcription. Arthritis Rheum. 50: 2995 – 2303.en_US
dc.identifier.citedreferenceGrant, D.D., R. Goldstein, J. Karsh & H.C. Birnboim. 2001. Nitric oxide donors induce large-scale deletion mutations in human lymphoblastoid cells: implications for mutations in T-lymphocytes from arthritis patients. Environ. Mol. Mutagen. 38: 261 – 267.en_US
dc.identifier.citedreferenceTamir, S., T. deRojas-Walker, A. Gal, et al. 1995. Nitric oxide production in relation to spontaneous B-cell lymphoma and myositis in SJL mice. Cancer Res. 55: 4391 – 4397.en_US
dc.identifier.citedreferenceCompton, S.A., L.W. Elmore, K. Haydu, et al. 2006. Induction of nitric oxide synthase-dependent telomere shortening after functional inhibition of Hsp90 in human tumor cells. Mol. Cell. Biol. 26: 1452 – 1462.en_US
dc.identifier.citedreferenceCannons, J.L., J. Karsh, H.C. Birnboim & R. Goldstein R. 1998. HPRT- mutant T cells in the peripheral blood and synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum. 41: 1772 – 1782.en_US
dc.identifier.citedreferenceBronte, V. et al. 2003. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J. Immunol. 170: 270 – 278.en_US
dc.identifier.citedreferenceHegardt, P., B. Widegren & H.-O. Sjogren. 2000. Nitric-oxide-dependent systemic immunosuppression in animals with progressively growing malignant gliomas. Cell. Immunol. 200: 116 – 127.en_US
dc.identifier.citedreferencePope, R.M. 2002. Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat. Rev. Immunol. 2: 527 – 535.en_US
dc.identifier.citedreferenceMountz, J.D., H.-C. Hsu, Y. Matsuki & H.-G. Zhang. 2001. Apoptosis and rheumatoid arthritis: past, present and future directions. Curr. Rheum. Rep. 3: 70 – 78.en_US
dc.identifier.citedreferenceBrown, J.H., T.S. Jardetzky, J.C. Gorga, et al. 1993. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364: 33 – 39.en_US
dc.identifier.citedreferenceGleimer, M. & P. Parham. 2003. Stress management: MHC class I and class I-like molecules as reporters of cellular stress. Immunity 19: 469 – 477.en_US
dc.identifier.citedreferenceBrooks, A.G., J.C. Boyington & P.D. Sun. 2000. Natural killer cell recognition of HLA class I molecules. Rev. Immunogenet. 2: 433 – 448.en_US
dc.identifier.citedreferenceBennett, M.J., J.A. Lebron & P.J. Bjorkman. 2000. Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature 403: 46 – 53.en_US
dc.identifier.citedreferenceLoconto, J., F. Papes, E. Chang, et al. 2003. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112: 607 – 618.en_US
dc.identifier.citedreferenceBogdan, C. 2001. Nitric oxide and the immune response. Nat. Immunol. 2: 907 – 916.en_US
dc.identifier.citedreferenceFulop, T., Jr., A. Larbi, G. Dupuis & G. Pawelec. 2003. Ageing, autoimmunity and arthritis: Perturbations of TCR signal transduction pathways with ageing—a biochemical paradigm for the ageing immune system. Arthritis Res. Ther. 5: 290 – 302.en_US
dc.identifier.citedreferenceWu, Y., J. Zheng, J. Linden & J. Holoshitz. 2004. Genoprotective pathways. Part I. Extracellular signaling through Gs protein-coupled adenosine receptors prevents oxidative DNA damage. Mutat. Res. 546: 93 – 102.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.