Show simple item record

High glucose inhibits human epidermal keratinocyte proliferation for cellular studies on diabetes mellitus

dc.contributor.authorTerashi, Hirotoen_US
dc.contributor.authorIzumi, Kenjien_US
dc.contributor.authorDeveci, Mustafaen_US
dc.contributor.authorRhodes, Lenore M.en_US
dc.contributor.authorMarcelo, Cynthia L.en_US
dc.date.accessioned2010-06-01T19:07:13Z
dc.date.available2010-06-01T19:07:13Z
dc.date.issued2005-12en_US
dc.identifier.citationTerashi, Hiroto; Izumi, Kenji; Deveci, Mustafa; Rhodes, Lenore M; Marcelo, Cynthia L (2005). "High glucose inhibits human epidermal keratinocyte proliferation for cellular studies on diabetes mellitus." International Wound Journal 2(4): 298-304. <http://hdl.handle.net/2027.42/72307>en_US
dc.identifier.issn1742-4801en_US
dc.identifier.issn1742-481Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72307
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16618316&dopt=citationen_US
dc.description.abstractIn order to more clarify the delayed wound healing in diabetes mellitus, we cultured the human epidermal keratinocytes in both 6 mM (control group) and 12 mM glucose (high-glucose group) of ‘complete’ MCDB 153 medium. Hyperglycaemia slowed the rate of their proliferation and inhibited their DNA synthesis and the production of total proteins. By 1 month after primary seeding in high-glucose group, the cells ceased their proliferation, whereas the cells in control group grew for more than 40 days. Mean population doublings in high-glucose group was 5·27 (vs. 7·25 in control, P = 0·001), and mean population doubling time during 1 month in high glucose group was 5·43 days (vs. 3·65 days in control, P = 0·02). They indicate that prolonged exposure to high glucose decreases the replicative life span of human epidermal keratinocytes in vitro. Furthermore, analysis of fatty acid contents in membrane phospholipids with thin-layer and gas chromatography showed no difference between the cultured keratinocytes in both conditions. Immunocytochemical staining of glucose transporter 1 shows that 28·1% of cells in high-glucose group were almost twice positive of those in control group (13·2%, P = 0·008). The mechanism of the ill effects of high glucose on epidermal keratinocytes is not so far clear, but it indicates the possibility of any direct effect of hyperglycaemia on glucose metabolism without changing lipid metabolism on cell membrane. The high-glucose group presented in this report can be available as an in vitro valuable study model of skin epidermal condition on diabetes mellitus.en_US
dc.format.extent160028 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rightsBlackwell Publishing Ltd and Medicalhelplines.com Inc 2005en_US
dc.subject.otherDiabetes Mellitusen_US
dc.subject.otherEpidermal Keratinocytesen_US
dc.subject.otherGlucoseen_US
dc.subject.otherLipidsen_US
dc.subject.otherWound Healingen_US
dc.titleHigh glucose inhibits human epidermal keratinocyte proliferation for cellular studies on diabetes mellitusen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSection of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA;en_US
dc.contributor.affiliationumSection of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA;en_US
dc.contributor.affiliationumSection of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA;en_US
dc.contributor.affiliationumSection of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA;en_US
dc.contributor.affiliationumSection of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USAen_US
dc.identifier.pmid16618316en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72307/1/j.1742-4801.2005.00148.x.pdf
dc.identifier.doi10.1111/j.1742-4801.2005.00148.xen_US
dc.identifier.sourceInternational Wound Journalen_US
dc.identifier.citedreferenceMorain WD, Colen LB. Wound healing in diabetes mellitus. Clin Plast Surg 1990; 17: 493 – 501.en_US
dc.identifier.citedreferenceLorenzi M, Cagliero E, Toledo S. Glucose toxicity for human endothelial cells in culture: delayed replication, disturbed cell cycle, and accelerated death. Diabetes 1985; 34: 621 – 7.en_US
dc.identifier.citedreferenceLorenzi M, Nordberg JA, Toledo S. High glucose prolongs cell-cycle traversal of cultured human endothelial cells. Diabetes 1987; 36: 1261 – 7.en_US
dc.identifier.citedreferenceCurcio F, Ceriello A. Decreased cultured endothelial cell proliferation in high glucose medium is reversed by antioxidants: new insights on the pathophysiological mechanisms of diabetic vascular complications. In Vitro Cell Dev Biol 1992; 28A: 787 – 90.en_US
dc.identifier.citedreferenceSibbitt WL Jr, Mills RG, Bigler CF, Eaton RP, Griffey RH, Vanderjagt DL. Glucose inhibition of human fibroblast proliferation an response to growth factors is prevented by inhibitiors of aldose reductase. Mech Ageing Dev 1989; 47: 265 – 79.en_US
dc.identifier.citedreferenceRheinwald JG, Green H. Growth of cultured mammalian cells on secondary glucose sources. Cell 1974; 2: 287 – 93.en_US
dc.identifier.citedreferenceZielke HR, Zielke CL, Ozand PT. Glutamine: a major energy source for cultured mammalian cells. Fed Proc 1984; 43: 121 – 5.en_US
dc.identifier.citedreferenceBoyce SA, Ham RG. Cultivation, frozen storage, and clonal growth of normal human epidermal keratinocytes in serum-free media. J Tissue Cult Methods 1985; 9: 83 – 93.en_US
dc.identifier.citedreferencePeehl DM, Ham RG. Clonal growth of human keratinocytes with small amounts of dialyzed serum. In Vitro Cell Dev Biol Anim 1980; 16: 526 – 40.en_US
dc.identifier.citedreferenceGould GW, Holman GD. The glucose transporter family: structure, function and tissue-specific expression. Biochem J 1993; 295: 329 – 41.en_US
dc.identifier.citedreferenceGherzi R, Melioli G, De Luca M, D'Agostino A, Guastella M, Traverso CE, D'Anna F, Franzi AT, Cancedda R. High expression levels of the ‘Eryhtroid/Brain’ type glucose transporter (GLUT1) in the basal cells of human eye conjunctiva and oral mucosa reconstituted in culture. Exp Cell Res 1991; 195: 230 – 6.en_US
dc.identifier.citedreferenceGherzi R, Melioli G, De Luca M, D'Agostino Distefano G, Guastella M, D'Anna F, Franzi AT, Cancedda R. ‘HepG2/Erythroid/Brain’ type glucose transporter (GLUT1) is highly expressed in human epidermis: keratinocyte differentiation affects GLUT1 levels in reconstituted epidermis. J Cell Physiol 1992; 150: 463 – 74.en_US
dc.identifier.citedreferenceVoldstedlund M, Dabelsteen E. Expression of GLUT1 in stratified squamous epithelia and oral carcinoma from humans and rats. APMIS 1997; 105: 537 – 45.en_US
dc.identifier.citedreferencePonec M, Kempenaar J, Boonstra J. Regulation of lipid synthesis in relation to keratinocyte differentiation capacity. Biochim Biophys Acta 1987; 921: 512 – 21.en_US
dc.identifier.citedreferencePonec M, Weeheim A, Kempenaar J, Mommaas AM, Nugteren DH. Lipid composition of cultured human keratinocytes in relation to their differentiation. J Lipid Res 1988; 29: 949 – 61.en_US
dc.identifier.citedreferencePonec M, Weeheim A, Kempenaar J, Boonstra J. Differentiation of cultured human keratinocytes: effect of culture conditions on lipid composition of normal vs. malignant cells. In Vitro Cell Dev Biol 1989; 25: 689 – 96.en_US
dc.identifier.citedreferenceMarcelo CL, Rhodes LM, Dunham WR. Normalization of essential-fatty-acid-deficient keratinocytes requires palmitic acid. J Invest Dermatol 1994; 103: 564 – 8.en_US
dc.identifier.citedreferenceSchÜrer N, Schliep V, Williams ML. Differential utilization of linoleic and arachidonic acid by cultured human keratinocytes. Skin Pharmacol 1995; 8: 30 – 40.en_US
dc.identifier.citedreferenceDunham WR, Klein SB, Rhodes LM, Marcelo CL. Oleic acid and linoleic acid are the major determinants of changes in keratinocyte plasma membrane viscosity. J Invest Dermatol 1996; 107: 332 – 5.en_US
dc.identifier.citedreferenceMarcelo CL, Dunham WR. The effect of fatty acid composition and retinoic acid on human keratinocyte plasma membrane viscosity. In: ShurÖder J-M, editor. Fatty Acids and Inflammatory Skin Diseases. Switzerland: BirkhÄuser, Verlag Basel, 1999: 159 – 74.en_US
dc.identifier.citedreferenceTerashi H, Izumi K, Rhodes LM, Marcelo CL. Human stratified squamous epithelia differ in cellular fatty acid composition. J Dermatol Sci 2000; 24: 14 – 24.en_US
dc.identifier.citedreferenceMarcelo CL, Kim YG, Kane JL, Voorhees JJ. Stratification, specialization and proliferation of primary keratinocyte cultures. J Cell Biol 1978; 79: 356 – 70.en_US
dc.identifier.citedreferenceMarcelo CL, Duell EA, Rhodes LM, Dunham WR. in vitro model of essential fatty acid deficiency. J Invest Dermatol 1992; 99: 703 – 8.en_US
dc.identifier.citedreferenceIzumi K, Takacs G, Terashi H, Feinberg SE. Ex vivo development of a composite human oral mucosal equivalent. J Oral Maxillofac Surg 1999; 57: 571 – 7.en_US
dc.identifier.citedreferenceLowry OH, Rosebrough NH, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265 – 75.en_US
dc.identifier.citedreferenceBurton K. Determination of DNA concentration with diphenylamine. Methods Enzymol 1968; 12: 163 – 6.en_US
dc.identifier.citedreferenceMarcelo CL, Duell EA, Stawiski MA, Stawiski MA, Anderson TF, Voorhees JJ. Cyclic nucleotide levels in psoriasis and normal keratomed epidermis. J Invest Dermatol 1979; 72: 20 – 4.en_US
dc.identifier.citedreferenceMarcelo CL, Dunham WR. Fatty acid metabolism studies of human epidermal cell cultures. J Lipid Res 1993; 34: 2077 – 90.en_US
dc.identifier.citedreferenceKaiser N, Sasson S, Feener EP, Boukobza-Vardi N, Higashi S, Moller DE, Davidheiser S, Przybylski RJ, King GL. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 1993; 42: 80 – 9.en_US
dc.identifier.citedreferenceKoivisto U-M, Martinez-Valdez H, Bilan PJ, Burdett E, Ramlal T, Klip A. Differential regulation of the GLUT-1 and GLUT-4 glucose transport systems by glucose and insulin in L6 muscle cells in culture. J Biol Chem 1991; 266: 2615 – 21.en_US
dc.identifier.citedreferenceSivitz WI, DeSautel SL, Kayano T, Bell GI, Pessin JE. Regulation of glucose transporter messenger RNA in insulin-deficient states. Nature 1989; 340: 72 – 4.en_US
dc.identifier.citedreferenceGiardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. J Clin Invest 1994; 94: 110 – 7.en_US
dc.identifier.citedreferenceFlorian P, Schoneberg T, Schulzke JD, Fromm M, Gitter AH. Single-cell epithelial defects close rapidly by an actinomyosin purse string mechanism with functional tight junctions. J Physiol 2002; 545 ( 4 ): 485 – 99.en_US
dc.identifier.citedreferenceKirfel G, Herzog V. Migration of epidermal keratinocytes: mechanisms, regulation, and biological significance. Protoplasma 2004; 223: 67 – 78.en_US
dc.identifier.citedreferenceSantoro MM, Gaudino G. Cellular and molecular facets of keratinocytes reepithelization during wound healing. Exp Cell Res 2005; 304: 274 – 86.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.