Show simple item record

Genetic Engineering and Therapy for Inherited and Acquired Cardiomyopathies

dc.contributor.authorDay, Sharleneen_US
dc.contributor.authorDavis, Jenniferen_US
dc.contributor.authorWestfall, Margaret V.en_US
dc.contributor.authorMetzger, Joseph M.en_US
dc.date.accessioned2010-06-01T19:07:42Z
dc.date.available2010-06-01T19:07:42Z
dc.date.issued2006-10en_US
dc.identifier.citationDAY, SHARLENE; DAVIS, JENNIFER; WESTFALL, MARGARET; METZGER, JOSEPH (2006). "Genetic Engineering and Therapy for Inherited and Acquired Cardiomyopathies." Annals of the New York Academy of Sciences 1080(1 Interactive and Integrative Cardiology ): 437-450. <http://hdl.handle.net/2027.42/72315>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72315
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17132800&dopt=citationen_US
dc.description.abstractThe cardiac myofilaments consist of a highly ordered assembly of proteins that collectively generate force in a calcium-dependent manner. Defects in myofilament function and its regulation have been implicated in various forms of acquired and inherited human heart disease. For example, during cardiac ischemia, cardiac myocyte contractile performance is dramatically downregulated due in part to a reduced sensitivity of the myofilaments to calcium under acidic pH conditions. Over the last several years, the thin filament regulatory protein, troponin I, has been identified as an important mediator of this response. Mutations in troponin I and other sarcomere genes are also linked to several distinct inherited cardiomyopathic phenotypes, including hypertrophic, dilated, and restrictive cardiomyopathies. With the cardiac sarcomere emerging as a central player for such a diverse array of human heart diseases, genetic-based strategies that target the myofilament will likely have broad therapeutic potential. The development of safe vector systems for efficient gene delivery will be a critical hurdle to overcome before these types of therapies can be successfully applied. Nonetheless, studies focusing on the principles of acute genetic engineering of the sarcomere hold value as they lay the essential foundation on which to build potential gene-based therapies for heart disease.en_US
dc.format.extent140127 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights2006 New York Academy of Sciencesen_US
dc.subject.otherMyofilament Regulationen_US
dc.subject.otherTroponin Ien_US
dc.subject.otherGene Deliveryen_US
dc.subject.otherSarcomereen_US
dc.subject.otherGene-based Therapiesen_US
dc.titleGenetic Engineering and Therapy for Inherited and Acquired Cardiomyopathiesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, Ann Arbor Michigan, 48103, USAen_US
dc.contributor.affiliationumDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor Michigan, 48103, USAen_US
dc.contributor.affiliationumDepartment of Surgery, University of Michigan, Ann Arbor Michigan, 48103, USAen_US
dc.identifier.pmid17132800en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72315/1/annals.1380.033.pdf
dc.identifier.doi10.1196/annals.1380.033en_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceThom, T., N. Haase, et al. 2006. Heart disease and stroke statistics–2006 Update. A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee Circulation.en_US
dc.identifier.citedreferenceMitk, A.M. 2006. Do lackluster trial findings mean new avenues are needed for heart research? JAMA 295: 611 – 612.en_US
dc.identifier.citedreferenceKatz, A. 2001. Physiology of the Heart. Lippincott Williams and Wilkins. Philadelphia.en_US
dc.identifier.citedreferenceOrchard, C.H. & J.C. Kentish. 1990. Effects of changes of pH on the contractile function of cardiac muscle. Am. J. Physiol. 258: C967 – C981.en_US
dc.identifier.citedreferenceSolaro, R.J., J.A. Lee, J.C. Kentish & D.G. Allen 1988. Effects of acidosis on ventricular muscle from adult and neonatal rats. Circ. Res. 63: 779 – 787.en_US
dc.identifier.citedreferenceWestfall, M.V., E.M. Rust & J.M. Metzger 1997. Slow skeletal troponin I gene transfer, expression, and myofilament incorporation enhances adult cardiac myocyte contractile function. Proc. Natl. Acad. Sci. USA 94: 5444 – 5449.en_US
dc.identifier.citedreferenceWestfall, M.V., F.P. Albayya, I.I. Turner & J.M. Metzger 2000. Chimera analysis of troponin I domains that influence Ca 2+ -activated myofilament tension in adult cardiac myocytes. Circ. Res. 86: 470 – 477.en_US
dc.identifier.citedreferenceReiser, P.J., M.V. Westfall, S. Schiaffino & R.J. Solaro 1994. Tension production and thin-filament protein isoforms in developing rat myocardium. Am. J. Physiol. 36: H1589 – H1596.en_US
dc.identifier.citedreference9.  Nhlbi Program for Genomic application. 2006. Genomics of Cardiovascular Development, Adaptation, and Remodeling. Harvard Medical School. Ref Type: Electronic Citationen_US
dc.identifier.citedreferenceWestfall, M.V. & J.M. Metzger 2001. Troponin I isoforms and chimeras: tuning the molecular switch of cardiac contraction. News Physiol. Sci. 16: 278 – 281.en_US
dc.identifier.citedreferenceSaggin, L., L. Gorza, S. Ausoni & S. Schiaffino. 1989. Troponin I switching in the developing heart. J. Biol. Chem. 264: 16299 – 16302.en_US
dc.identifier.citedreferenceHunkeler, N.M., J. Kullman & A.M. Murphy. 1991. Troponin I isoform expression in human heart. Circ. Res. 69: 1409 – 1414.en_US
dc.identifier.citedreferenceWolska, B.M., K. Vijayan, G.M. Arteaga, et al. 2001. Expression of slow skeletal troponin I in adult transgenic mouse heart muscle reduces the force decline observed during acidic conditions. J. Physiol. 536: 863 – 870.en_US
dc.identifier.citedreferenceWestfall, M.V., I.I. Turner, F.P. Albayya & J.M. Metzger 2001. Troponin I chimera analysis of the cardiac myofilament tension response to protein kinase A. Am. J. Physiol. 280: C324 – C332.en_US
dc.identifier.citedreferenceWestfall, M.V., F.P. Albayya & J.M. Metzger 1999. Functional analysis of troponin I regulatory domains in the intact myofilament of adult single cardiac myocytes. J. Biol. Chem. 274: 22508 – 22516.en_US
dc.identifier.citedreferenceDay, S.M., M.V. Westfall, et al. 2006. Histidine button engineered into cardiac troponin I protects the ischemic and failing heart. Nat. Med. 12: 181 – 189.en_US
dc.identifier.citedreferenceTeerlink, J.R. 2005. Overview of randomized clinical trials in acute heart failure syndromes. Am. J. Cardiol. 96: 59G – 67G.en_US
dc.identifier.citedreferenceBayram, M., L.L. De, M.B. Massie & M. Gheorghiade. 2005. Reassessment of dobutamine, dopamine, and milrinone in the management of acute heart failure syndromes. Am. J. Cardiol. 96: 47G – 58G.en_US
dc.identifier.citedreferenceHoshijima, M. 2005. Gene therapy targeted at calcium handling as an approach to the treatment of heart failure. Pharmacol. Ther. 105: 211 – 228.en_US
dc.identifier.citedreferenceMaron, B.J. 2002. Hypertrophic cardiomyopathy: a systematic review. JAMA 287: 1308 – 1320.en_US
dc.identifier.citedreferenceMaron, B.J. 2003. Sudden death in young athletes. N. Engl. J. Med. 349: 1064 – 1075.en_US
dc.identifier.citedreferenceNishimura, R.A. & D.R. Holmes Jr. 2004. Clinical practice. Hypertrophic obstructive cardiomyopathy. N. Engl. J. Med. 350: 1320 – 1327.en_US
dc.identifier.citedreferenceRichard, P., P. Charron, L. Carrier, et al. 2003. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107: 2227 – 2232.en_US
dc.identifier.citedreferenceVan Driest, S.L., S.R. Ommen, et al. 2005. Sarcomeric genotyping in hypertrophic cardiomyopathy. Mayo Clin. Proc. 80: 463 – 469.en_US
dc.identifier.citedreferenceAhmad, F., J.G. Seidman & C.E. Seidman. 2005. The genetic basis for cardiac remodeling. Annu. Rev. Genomics Hum. Genet. 6: 185 – 216.en_US
dc.identifier.citedreferenceBlair, E., C. Redwood, et al. 2001. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum. Mol. Genet. 10: 1215 – 1220.en_US
dc.identifier.citedreferenceCharron, P., O. Dubourg, et al. 1998. Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to the cardiac myosin-binding protein. C Gene Circ. 97: 2230 – 2236.en_US
dc.identifier.citedreferenceHo, C.Y., H.M. Lever, et al. 2000. Homozygous mutation in cardiac troponin T: implications for hypertrophic cardiomyopathy. Circulation 102: 1950 – 1955.en_US
dc.identifier.citedreferenceMarian, A.J. 2002. Modifier genes for hypertrophic cardiomyopathy. Curr. Opin. Cardiol. 17: 242 – 252.en_US
dc.identifier.citedreferenceMichele, D.E., C.A. Gomez, K.E. Hong, et al. 2002. Cardiac dysfunction in hypertrophic cardiomyopathy mutant tropomyosin mice is transgene-dependent, hypertrophy-independent, and improved by beta-blockade. Circ. Res. 92: 255 – 262.en_US
dc.identifier.citedreferenceFatkin, D., B.K. Mcconnell, et al. 2000. An abnormal Ca(2+) response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. J. Clin. Invest. 106: 1351 – 1359.en_US
dc.identifier.citedreferenceSemsarian, C., I. Ahmad, et al. 2002. The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. J. Clin. Invest. 109: 1013 – 1020.en_US
dc.identifier.citedreferenceKnollmann, B.C., P. Kirchhof, et al. 2003. Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circ. Res. 92: 428 – 436.en_US
dc.identifier.citedreferenceSpindler, M., K.W. Saupe, et al. 1998. Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J. Clin. Invest. 101: 1775 – 1783.en_US
dc.identifier.citedreferenceJavadpour, M.M., J.C. Tardiff, I. Pinz & J.S. Ingwall 2003. Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T. J. Clin. Invest. 112: 768 – 775.en_US
dc.identifier.citedreferenceFatkin, D. & R.M. Graham. 2002. Molecular mechanisms of inherited cardiomyopathies. Physiol. Rev. 82: 945 – 980.en_US
dc.identifier.citedreferenceKamisago, M., S.D. Sharma, et al. 2000. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med. 343: 1688 – 1696.en_US
dc.identifier.citedreferenceDaehmlow, S., J. Erdmann, et al. 2002. Novel mutations in sarcomeric protein genes in dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 298: 116 – 120.en_US
dc.identifier.citedreferenceChang, A.N., K. Harada, M.J. Ackerman & J.D. Potter. 2005. Functional consequences of hypertrophic and dilated cardiomyopathy-causing mutations in alpha-tropomyosin. J. Biol. Chem. 280: 34343 – 34349.en_US
dc.identifier.citedreferenceMirza, M., S. Marston, et al. 2005. Dilated cardiomyopathy mutations in three thin filament regulatory proteins result in a common functional phenotype. J. Biol. Chem. 280: 28498 – 28506.en_US
dc.identifier.citedreferenceKushwaha, S.S., J.T. Fallon & V. Fuster. 1997. Restrictive cardiomyopathy. N. Engl. J. Med. 336: 267 – 276.en_US
dc.identifier.citedreferenceMogensen, J., R. Kubo, et al. 2003. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J. Clin. Invest. 111: 209 – 216.en_US
dc.identifier.citedreferenceGomes, A.V., J. Liang & J.D. Potter. 2005. Mutations in human cardiac troponin I that are associated with restrictive cardiomyopathy affect basal ATPase activity and the calcium sensitivity of force development. J. Biol. Chem. 280: 30909 – 30915.en_US
dc.identifier.citedreferenceYumoto, F., Q.W. Lu, et al. 2005. Drastic Ca2+ sensitization of myofilament associated with a small structural change in troponin I in inherited restrictive cardiomyopathy. Biochem. Biophys. Res. Commun. 338: 1519 – 1526.en_US
dc.identifier.citedreferenceHaghighi, K., K.N. Gregory & E.G. Kranias. 2004. Sarcoplasmic reticulum Ca-ATPase-phospholamban interactions and dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 322: 1214 – 1222.en_US
dc.identifier.citedreferenceSzatkowski, M.L., M.V. Westfall, et al. 2001. In vivo acceleration of heart relaxation performance by Parvalbumin gene delivery. J. Clin. Invest. 107: 191 – 198.en_US
dc.identifier.citedreferenceRothermel, B.A., T.A. Mckinsey, R.B. Vega, et al. 2001. Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. USA 98: 3328 – 3333.en_US
dc.identifier.citedreferenceSussman, M.A., H.W. Lim, N. Gude, et al. 1998. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281: 1690 – 1693.en_US
dc.identifier.citedreferenceZhang, R., M.S. Khoo, Y. Wu, et al. 2005. Calmodulin kinase II inhibition protects against structural heart disease. Nat. Med. 11: 409 – 417.en_US
dc.identifier.citedreferenceRobbins, J. 2000. Remodeling the cardiac sarcomere using transgenesis. Annu. Rev. Physiol. 62: 261 – 287.en_US
dc.identifier.citedreferenceMichele, D.E., F. Albayya & J.M. Metzger 1999. Thin filament protein dynamics in fully differentiated adult cardiac myocytes: toward a model of sarcomere maintenance. J. Cell. Biol. 145: 1483 – 1495.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.