Long-Lasting Neural and Behavioral Effects of Iron Deficiency in Infancy

Show simple item record

dc.contributor.author Lozoff, Betsy en_US
dc.contributor.author Beard, John en_US
dc.contributor.author Connor, James en_US
dc.contributor.author Felt, Barbara en_US
dc.contributor.author Georgieff, Michael en_US
dc.contributor.author Schallert, Timothy en_US
dc.date.accessioned 2010-06-01T19:11:40Z
dc.date.available 2010-06-01T19:11:40Z
dc.date.issued 2006-05 en_US
dc.identifier.citation Lozoff, Betsy; Beard, John; Connor, James; Felt, Barbara; Georgieff, Michael; Schallert, Timothy (2006). "Long-Lasting Neural and Behavioral Effects of Iron Deficiency in Infancy." Nutrition Reviews 64(): S34-S43. <http://hdl.handle.net/2027.42/72379> en_US
dc.identifier.issn 0029-6643 en_US
dc.identifier.issn 1753-4887 en_US
dc.identifier.uri http://hdl.handle.net/2027.42/72379
dc.identifier.uri http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16770951&dopt=citation en_US
dc.format.extent 92568 bytes
dc.format.extent 3109 bytes
dc.format.mimetype application/pdf
dc.format.mimetype text/plain
dc.publisher Blackwell Publishing Ltd en_US
dc.rights 2006 International Life Sciences Institute en_US
dc.subject.other Behavior en_US
dc.subject.other Brain Development en_US
dc.subject.other Infants en_US
dc.subject.other Iron Deficiency en_US
dc.subject.other Monkeys en_US
dc.subject.other Rodents en_US
dc.title Long-Lasting Neural and Behavioral Effects of Iron Deficiency in Infancy en_US
dc.type Article en_US
dc.subject.hlbsecondlevel Medicine (General) en_US
dc.subject.hlbtoplevel Health Sciences en_US
dc.description.peerreviewed Peer Reviewed en_US
dc.contributor.affiliationum Center for Human Growth and Development and the Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA en_US
dc.contributor.affiliationother Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA en_US
dc.contributor.affiliationother with the Department of Neurosurgery, Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania en_US
dc.contributor.affiliationother the Department of Neonatology, University of Minnesota, Minneapolis, Minnesota, USA en_US
dc.contributor.affiliationother the Department of Psychology, University of Texas, Austin, Texas, USA. en_US
dc.identifier.pmid 16770951 en_US
dc.description.bitstreamurl http://deepblue.lib.umich.edu/bitstream/2027.42/72379/1/j.1753-4887.2006.tb00243.x.pdf
dc.identifier.doi 10.1111/j.1753-4887.2006.tb00243.x en_US
dc.identifier.source Nutrition Reviews en_US
dc.identifier.citedreference Beard J., Stoltzfus R. Iron-deficiency anemia: reex-amining the nature and magnitude of the public health problem. J Nutr 2001; 131: S563S – S703S. en_US
dc.identifier.citedreference Leung AKC, Chan KW. Iron deficiency anemia. Adv Pediatr 2001; 48: S385 – S408. en_US
dc.identifier.citedreference Beard JL, Connor JR. Iron status and neural functioning. Ann Rev Nutr 2003; 23: S41 – S58. en_US
dc.identifier.citedreference Grantham-McGregor S., Ani C. A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr 2001; 131: S649S – S668S. en_US
dc.identifier.citedreference Black MM, Baqui AH, Zaman K., et al. Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants. Am J Clin Nutr 2004; 80: S903 – S910. en_US
dc.identifier.citedreference Pollitt E., Schurch B. Developmental pathways of the malnourished child: results of a supplementation trial in Indonesia. Eur J Clin Nutr 2000; 54: S1 – S114. en_US
dc.identifier.citedreference Stoltzfus RJ, Kvalsvig JD, Chwaya HM, et al. Effects of iron supplementation and anthelmintic treatment on motor and language development of preschool children in Zanzibar: double blind, placebo controlled study. BMJ 2001; 323: S1389 – S1393. en_US
dc.identifier.citedreference Heywood A., Oppenheimer S., Heywood P., et al. Behavioral effects of iron supplementation in infants in Madang, Papua New Guinea. Am J Clin Nutr 1989; 50: S630 – S640. en_US
dc.identifier.citedreference Lind T., Lonnerdal B., Stenlund H., et al. A community-based randomized controlled trial of iron and zinc supplementation in Indonesian infants: effects on growth and development. Am J Clin Nutr 2004; 80: S729 – S736. en_US
dc.identifier.citedreference Siegel EH, Stoltzfus RJ, Kariger PK, et al. Growth indices, anemia, and diet independently predict motor milestone acquisition of infants in south central Nepal. J Nutr 2005; 135: S2840 – S2844. en_US
dc.identifier.citedreference Kariger PK, Stoltzfus RJ, Olney D., et al. Iron deficiency and physical growth predict attainment of walking but not crawling in poorly nourished Zanzibari infants. J Nutr 2005; 135: S814 – S819. en_US
dc.identifier.citedreference Black MM, Sazawal S., Black RE, et al. Micronutrient supplementation leads to improved development and behavior among infants born small-for-gestational age. Pediatr Res 2002; 51: S2565. en_US
dc.identifier.citedreference Lozoff B., Black M. Impact of micronutrient deficiencies on behavior and development. In: Pettifor J., Zlotkin SH, eds. Nutrition-Micronutrient Deficiencies during the Weaning Period and the First Years of Life 2003; Basel: Karger; S119 – S135. en_US
dc.identifier.citedreference Sachdev H., Gera T., Nestel P. Effect of iron supplementation on mental and motor development in children: systematic review of randomised controlled trials. Pub Health Nutr 2005; 8: S117 – S132. en_US
dc.identifier.citedreference Lozoff B., de Andraca I., Castillo M., et al. Behavioral and developmental effects of preventing iron-deficiency anemia in healthy full-term infants. Pediatrics 2003; 112: S846 – S854. en_US
dc.identifier.citedreference Shafir Liberzon, Angulo-Barroso R., Calatroni A., et al. Iron deficiency affects motor development in 9-month-old infants. Pediatr Res 2005; 57: S1731. en_US
dc.identifier.citedreference Sherriff A., Emond A., Bell JC, et al. Should infants be screened for anaemia? A prospective study investigating the relation between haemoglobin at 8, 12, and 18 months and development at 18 months. Arch Dis Child 2001; 84: S480 – S485. en_US
dc.identifier.citedreference Moffatt MEK, Longstaffe S., Besant J., et al. Prevention of iron deficiency and psychomotor decline in high risk infants through iron fortified infant formula: A randomized clinical trial. J Pediatr 1994; 125: S527 – S534. en_US
dc.identifier.citedreference Friel JK, Aziz K., Andrews WL, et al. A double-masked, randomized control trial of iron supplementation in early infancy in healthy full-term breast-fed infants. J Pediatr 2003; 143: S582 – S586. en_US
dc.identifier.citedreference Williams J., Wolff A., Daly A., et al. Iron supplemented formula milk related to reduction in psychomotor decline in infants for inner city areas: randomised study. BMJ 1999; 318: S693 – S698. en_US
dc.identifier.citedreference Roncagliolo M., Garrido M., Walter T., et al. Evidence of altered central nervous system development in infants with iron deficiency anemia at 6 mo: Delayed maturation of auditory brain stem responses. Am J Clin Nutr 1998; 68: S683 – S690. en_US
dc.identifier.citedreference Li YY, Wang HM, Wang WG. The effect of iron deficiency anemia on the auditory brainstem response in infant. Natl Med J China 1994; 74: S367 – S369. en_US
dc.identifier.citedreference Algarin C., Peirano P., Garrido M., et al. Iron deficient anemic infants have decreased rapid eye movements density in active sleep [abstract]. Sleep 2003; suppl ): SA146. en_US
dc.identifier.citedreference Burden MJ, Armony-Sivan R., Westerlund A., et al. Preliminary Findings from an ERP Study of Memory Processing in Iron Deficient Infants. Presented at the International Conference on Information Systems; December 12–15, 2004; Washington, DC. en_US
dc.identifier.citedreference Abrams JM, Jacobson SW, Lozoff B., et al. EEG correlates of iron deficiency in infancy. Pediatr Res 2005; 57: S1287. en_US
dc.identifier.citedreference Sarici SU, Serdar MA, Dundaroz MR, et al. Brain-stem auditory-evoked potentials in iron-deficiency anemia. Pediatr Neurol 2001; 24: S205 – S208. en_US
dc.identifier.citedreference Angulo-Kinzler RM, Peirano P., Lin E., et al. Spontaneous motor activity in human infants with iron deficiency anemia. Early Hum Dev 2002; 66: S67 – S79. en_US
dc.identifier.citedreference Angulo-Kinzler RM, Peirano P., Lin E., et al. Twenty-four hour motor activity in human infants with and without iron-deficiency anemia. Early Hum Dev 2002; 70: S85 – S101. en_US
dc.identifier.citedreference Idjradinata P., Pollitt E. Reversal of developmental delays in iron-deficient anaemic infants treated with iron. Lancet 1993; 341: S1 – S4. en_US
dc.identifier.citedreference Akman M., Cebeci D., Okur V., et al. The effects of iron deficiency on infants' developmental test performance. Acta Paediatr 2004; 93: S1391 – S1396. en_US
dc.identifier.citedreference Antunes H. Iron Deficiency Anaemia in Infants - A Prospective Neurodevelopment Evaluation. University of Portugal; 2004. en_US
dc.identifier.citedreference Allen LH. Anemia and iron deficiency: effects on pregnancy outcome. Am J Clin Nutr 2000; 71: S1280S – S1284S. en_US
dc.identifier.citedreference Vaughn J., Brown J., Carter JP. The effects of maternal anemia on infant behavior. J Natl Med Assoc 1986; 78: S963 – S968. en_US
dc.identifier.citedreference Wachs TD, Pollitt E., Cuerto S., et al. Relation of neonatal iron status to individual variability in neonatal temperament. Dev Psychobiol 2005; 46: S141 – S153. en_US
dc.identifier.citedreference Rao R., Georgieff MK. Perinatal aspects of iron metabolism. Acta Paediatr Suppl 2002; 91: S124 – S129. en_US
dc.identifier.citedreference Armony-Sivan R., Eidelman AI, Lanir A., et al. Iron status and neurobehavioral development of premature infants. J Perinatol 2004; 24: S757 – S762. en_US
dc.identifier.citedreference Nelson CA, Wewerka SS, Borscheid AJ, et al. Electrophysiologic evidence of impaired cross-modal recognition memory in 8-month-old infants of diabetic mothers. J Pediatr 2003; 142: S575 – S582. en_US
dc.identifier.citedreference Nelson CA, Wewerka S., Thomas KM, et al. Neuro-cognitive sequelae of infants of diabetic mothers. Behav Neurosci 2000; 114: S950 – S956. en_US
dc.identifier.citedreference DeBoer T., Wewerka S., Bauer PJ, et al. Explicit memory performance in infants of diabetic mothers at 1 year of age. Dev Med Child Neurol 2005; 47: S525 – S531. en_US
dc.identifier.citedreference Siddappa AM, Georgieff MK, Wewerka S., et al. Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatr Res 2004; 55: S1034 – S1041. en_US
dc.identifier.citedreference Lozoff B. Has iron deficiency been shown to cause altered behavior in infants ? In: Dobbing J., ed. Brain, Behaviour, and Iron in Infant Diet. New York: Springer-Verlag; 1990; S107 – S131. en_US
dc.identifier.citedreference Palti H., Pevsner B., Adler B. Does anemia in infancy affect achievement on developmental and intelligence tests ? Hum Biol 1983; 55: S189 – S194. en_US
dc.identifier.citedreference Dommergues JP, Archambeaud B., Ducot Y., et al. Iron deficiency and psychomotor development scores: A longitudinal study between ages 10 months and 4 years. Arch Fr Pediatr 1989; 46: S487 – S490. en_US
dc.identifier.citedreference Wasserman G., Graziano JH, Factor-Litvak P., et al. Independent effects of lead exposure and iron deficiency anemia on developmental outcome at age 2 years. J Pediatr 1992; 121: S695 – S703. en_US
dc.identifier.citedreference Wasserman GA, Graziano JH, Factor-Litvak P., et al. Consequences of lead exposure and iron supplementation on childhood development at age 4 years. Neurotoxicol Teratol 1994; 16: S233 – S240. en_US
dc.identifier.citedreference Lozoff B., Jimenez E., Wolf AW. Long-term developmental outcome of infants with iron deficiency. N Engl J Med 1991; 325: S687 – S694. en_US
dc.identifier.citedreference Corapci F., Radan AE, Lozoff B. Iron deficiency in infancy and mother-child interaction at 5 years. J Behav Dev Pediatr 2006; in press. en_US
dc.identifier.citedreference de Andraca I., Walter T., Castillo M., et al. Iron Deficiency Anemia and Its Effects upon Psychological Development at Preschool Age: A Longitudinal Study. Nestle Foundation Nutrition Annual Report (1990 ). Vevey, Switzerland: Nestec Ltd; 1991; S53 – S62. en_US
dc.identifier.citedreference Tamura T., Goldenberg RL, Hou J., et al. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J Pediatr 2002; 140: S165 – S170. en_US
dc.identifier.citedreference Cantwell RJ. The long term neurological sequelae of anemia in infancy. Pediatr Res 1974; 342: S68. en_US
dc.identifier.citedreference Palti H., Meijer A., Adler B. Learning achievement and behavior at school of anemic and non-anemic infants. Early Hum Dev 1985; 10: S217 – S223. en_US
dc.identifier.citedreference Hurtado EK, Claussen AH, Scott KG. Early childhood anemia and mild or moderate mental retardation. Am J Clin Nutr 1999; 69: S115 – S119. en_US
dc.identifier.citedreference Lozoff B., Jimenez E., Hagen J., et al. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 2000; 105: SE51. en_US
dc.identifier.citedreference Shafir T., Angulo-Barroso R., Calatroni A., et al. Effects of iron deficiency on patterns of motor development over time. Submitted manuscript. en_US
dc.identifier.citedreference Lozoff B., Smith J., Liberzon T., et al. Longitudinal analysis of cognitive and motor effects of iron deficiency in infancy. APA Plenary Presentation. Pediatr Res 2004; 55: S23A. en_US
dc.identifier.citedreference Lozoff B., Jimenez E., Walter T. Double burden of iron deficiency and low socio-economic status: a growth curve analysis of cognitive test scores to 19 years. Arch Pediatr Adolesc Med 2006; in press. en_US
dc.identifier.citedreference Peirano P., Algarin C., Garrido M., et al. Cerebral executive function in preadolescents is affected by iron deficiency in infancy. Pediatr Res 2004; 55: S279A. en_US
dc.identifier.citedreference Burden M., Koss M., Lozoff B. Neurocognitive differences in 19-year-olds treated for iron deficiency in infancy. Pediatr Res 2004; 55: S279A. en_US
dc.identifier.citedreference Algarin C., Peirano P., Garrido M., et al. Iron deficiency anemia in infancy: Long-lasting effects on auditory and visual systems functioning. Pediatr Res 2003; 53: S217 – S223. en_US
dc.identifier.citedreference Peirano P., Algarin C., Garrido M., et al. Iron deficiency anemia (IDA) in infancy is associated with altered sleep states organization in early childhood. Submitted manuscript. en_US
dc.identifier.citedreference Angulo-Barroso RM, Peirano P., Calatroni A., et al. Forty-eight-hour motor activity in 4-year-old children who had iron-deficiency anemia in infancy. Submitted manuscript. en_US
dc.identifier.citedreference Beard JL, Felt B., Schallert T., Burhans M., Connor JR, Georgieff MK. Moderate iron deficiency in infancy: Biology and behavior in young rats. Behav Brain Res 2006; Epub ahead of print. en_US
dc.identifier.citedreference Felt BT, Beard JL, Schallert T., et al. Persistent neurochemical and behavioral abnormalities in adulthood despite early iron supplementation for perinatal iron deficiency anemia in rats. Brain Behav Res 2006; in press. en_US
dc.identifier.citedreference Clardy SL, Wang X., Zhao W., et al. Acute and chronic effects of developmental iron deficiency on mRNA expression patterns in the brain. J Neural Transm 2006; in press. en_US
dc.identifier.citedreference Thompson RA, Nelson CA. Developmental science and the media. Early brain development. Am Psychol 2001; 56: S5 – S15. en_US
dc.identifier.citedreference Kretchmer N., Beard JL, Carlson S. The role of nutrition in the development of normal cognition. Am J Clin Nutr 1996; 63: S997S – S1001S. en_US
dc.identifier.citedreference DeUngria M., Rao R., Wobken JD, et al. Perinatal iron deficiency decreases cytochrome c oxidase (CytOx) activity in selected regions of neonatal rat brain. Pediatr Res 2000; 48: S169 – S176. en_US
dc.identifier.citedreference Rao R., Tkac I., Townsend EL, et al. Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J Nutr 2003; 133: S3215 – S3221. en_US
dc.identifier.citedreference Jorgenson LA, Wobken JD, Georgieff MK. Perinatal iron deficiency alters apical dendritic growth in hippocampal CA1 pyramidal neurons. Dev Neurosci 2003; 25: S412 – S420. en_US
dc.identifier.citedreference Yoo YE, Hong JH, Hur KC, et al. Iron enhances NGF-induced neurite outgrowth in PC12 cells. Mol Cells 2004; 17: S340 – S346. en_US
dc.identifier.citedreference Yu GS, Steinkirchner TM, Rao GA, et al. Effect of prenatal iron deficiency on myelination in rat pups. Am J Pathol 1986; 125: S620 – S624. en_US
dc.identifier.citedreference Oloyede OB, Folayan AT, Odutuga AA. Effects of low-iron status and deficiency of essential fatty acids on some biochemical constituents of rat brain. Biochem Int 1992; 27: S913 – S922. en_US
dc.identifier.citedreference Larkin EC, Rao GA. Importance of fetal and neonatal iron: Adequacy for normal development of central nervous system. In: Dobbing J., ed. Brain, Behaviour, and Iron in the Infant Diet. London: Springer-Verlag; 1990; S43 – S62. en_US
dc.identifier.citedreference Kwik-Uribe CL, Gietzen D., German JB, et al. Chronic marginal iron intakes during early development in mice result in persistent changes in dopamine metabolism and myelin composition. J Nutr 2000; 130: S2821 – S2830. en_US
dc.identifier.citedreference Beard JL, Wiesinger JA, Connor JR. Pre- and post-weaning iron deficiency alters myelination in Sprague-Dawley rats. Dev Neurosci 2003; 25: S308 – S315. en_US
dc.identifier.citedreference Ortiz E., Pasquini JM, Thompson K., et al. Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res 2004; 77: S681 – S689. en_US
dc.identifier.citedreference Morath DJ, Mayer-Proschel M. Iron deficiency during embryogenesis and consequences for oligoden-drocyte generation in vivo. Dev Neurosci 2002; 24: S197 – S207. en_US
dc.identifier.citedreference Connor JR, Phillips TM, Lakshman MR, et al. Regional variation in the levels of transferrin in the CNS of normal and myelin-deficient rats. J Neurochem 1987; 49: S1523 – S1529. en_US
dc.identifier.citedreference Han J., Day JR, Connor JR, et al. Gene expression of transferrin and transferrin receptor in brains of control vs. iron-deficient rats. Nutr Neurosci 2003; 6: S1 – S10. en_US
dc.identifier.citedreference Wigglesworth JM, Baum H. Iron dependent enzymes in the brain. In: Youdim MBH, ed. Brain Iron: Neurochemical and Behavioural Aspects. New York: Taylor and Francis; 1988; S25 – S66. en_US
dc.identifier.citedreference Morse A., Beard JL, Jones B. Behavioral and neurochemical alterations in iron deficient mice. Proc Soc Exp Biol Med 1999; 220: S147 – S152. en_US
dc.identifier.citedreference Burhans MS, Dailey C., Beard Z., et al. Iron deficiency: differential effects on monoamine transporters. Nutr Neurosci 2005; 8: S31 – S38. en_US
dc.identifier.citedreference Buwen J. hDAT Metabolism in Iron-Deficient Neuroblastoma Cells University Park, PA: The Pennsylvania State University; 2005. en_US
dc.identifier.citedreference Ye Z., Connor JR. Identification of iron responsive genes by screening cDNA libraries from suppression subtractive hybridization with antisense probes from three iron conditions. Nucleic Acids Res 2000; 28: S1802 – S1807. en_US
dc.identifier.citedreference Wang X., Wiesinger J., Beard J., et al. Thy1 expression in the brain is affected by iron and is decreased in Restless Legs Syndrome. J Neurol Sci 2004; 220: S59 – S66. en_US
dc.identifier.citedreference Whishaw IQ, Funk DR, Hawryluk SJ, et al. Absence of sparing of spatial navigation, skilled forelimb and tongue use and limb posture in the rat after neonatal dopamine depletion. Physiol Behav 1987; 40: S247 – S253. en_US
dc.identifier.citedreference Feeser HR, Raskin LA. Effects of neonatal dopamine depletion on spatial ability during ontogeny. Behav Neurosci 1987; 101: S812 – S818. en_US
dc.identifier.citedreference Schallert T., Petrie BF, Whishaw IQ. Neonatal dopamine depletion: Spared and unspared sensorimotor and attentional disorders and effects of further depletion in adulthood. Psychobiology 1989; 17: S386 – S396. en_US
dc.identifier.citedreference Day LB, Weisend M., Sutherland RJ, et al. The hippocampus is not necessary for a place response but may be necessary for pliancy. Behav Neurosci 1999; 113: S914 – S924. en_US
dc.identifier.citedreference Beard JL, Dawson H., Pinero DJ. Iron metabolism: a comprehensive review. Nutr Rev 1996; 54: S295 – S317. en_US
dc.identifier.citedreference Schallert T., Whishaw IQ. Bilateral cutaneous stimulation of the somatosensory system in hemidecor-ticate rats. Behav Neurosci 1984; 98: S518 – S540. en_US
dc.identifier.citedreference Schallert T. Neonatal hemidecortication and bilateral cutaneous stimulation in rats. Dev Psychobiol 1985; 18: S501 – S514. en_US
dc.identifier.citedreference Felt BT, Schallert T., Shao J., et al. Early appearance of functional deficits after neonatal excitotoxic and hypoxic-ischemic injury: fragile recovery after development and role of the NMDA receptor. Dev Neurosci 2002; 24: S418 – S425. en_US
dc.identifier.citedreference Kolb B. Neurological models. In: Whishaw IQ, Kolb B., eds. The Behavior of the Laboratory Rat. New York: Oxford University Press; 2005; S449 – S461. en_US
dc.identifier.citedreference Kolb B., Gibb R., Gonzales C. Cortical injury and neuroplasticity during brain development. In: Shaw CA, McEachern JC, eds. Toward a Theory of Neuroplasticity. New York: Elsevier; 2001; S223 – S243. en_US
dc.identifier.citedreference Barks JD, Li XL, Pecina S., et al. Delayed appearance of functional deficits after neonatal hypoxicischemic and excitotoxic brain injury, and recovery during later development. Pediatr Res 2002; 51: S2653. en_US
dc.identifier.citedreference Black JE, Jones TA, Nelson CA, et al. Neural plasticity and developing brain. In: Alessi NE, Coyle JT, Harrison SI, et al., eds. The Handbook of Child and Adolescent Psychiatry. New York: John Wiley & Sons; 1998; S31 – S53. en_US
dc.identifier.citedreference Greenough WT, Black JE. Induction of brain structure by experience: Substrates for cognitive development. In: Gunnar M., Nelson C., eds. Developmental Behavioral Neuroscience. The Minnesota Symposia on Child Psychology. Vol. 24. Hillsdale, NJ: Lawrence Erlbaum; 1992; S155 – S200. en_US
dc.identifier.citedreference Kleim JA, Jones TA, Schallert T. Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res 2003; 28: S1757 – S1769. en_US
dc.owningcollname Interdisciplinary and Peer-Reviewed
 Show simple item record

This item appears in the following Collection(s)


Search Deep Blue

Advanced Search

Browse by

My Account

Information

Available Now


MLibrary logo