Show simple item record

Nitrosative stress treatment of E. coli targets distinct set of thiol-containing proteins

dc.contributor.authorBrandes, Nicolasen_US
dc.contributor.authorRinck, Andreaen_US
dc.contributor.authorLeichert, Lars Ingoen_US
dc.contributor.authorJakob, Ursulaen_US
dc.date.accessioned2010-06-01T19:12:46Z
dc.date.available2010-06-01T19:12:46Z
dc.date.issued2007-11en_US
dc.identifier.citationBrandes, Nicolas; Rinck, Andrea; Leichert, Lars Ingo; Jakob, Ursula (2007). "Nitrosative stress treatment of E. coli targets distinct set of thiol-containing proteins." Molecular Microbiology 66(4): 901-914. <http://hdl.handle.net/2027.42/72397>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72397
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17919278&dopt=citationen_US
dc.description.abstractReactive nitrogen species (RNS) function as powerful antimicrobials in host defence, but so far little is known about their bacterial targets. In this study, we set out to identify Escherichia coli proteins with RNS-sensitive cysteines. We found that only a very select set of proteins contain cysteines that undergo reversible thiol modifications upon nitric oxide (NO) treatment in vivo . Of the 10 proteins that we identified, six (AtpA, AceF, FabB, GapA, IlvC, TufA) have been shown to harbour functionally important thiol groups and are encoded by genes that are considered essential under our growth conditions. Media supplementation studies suggested that inactivation of AceF and IlvC is, in part, responsible for the observed NO-induced growth inhibition, indicating that RNS-mediated modifications play important physiological roles. Interestingly, the majority of RNS-sensitive E. coli proteins differ from E. coli proteins that harbour H 2 O 2 -sensitive thiol groups, implying that reactive oxygen and nitrogen species affect distinct physiological processes in bacteria. We confirmed this specificity by analysing the activity of one of our target proteins, the small subunit of glutamate synthase. In vivo and in vitro activity studies confirmed that glutamate synthase rapidly inactivates upon NO treatment but is resistant towards other oxidative stressors.en_US
dc.format.extent473502 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2007 The Authors; Journal compilation © 2007 Blackwell Publishing Ltden_US
dc.titleNitrosative stress treatment of E. coli targets distinct set of thiol-containing proteinsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid17919278en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72397/1/j.1365-2958.2007.05964.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2007.05964.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAgnelli, P., Dossena, L., Colombi, P., Mulazzi, S., Morandi, P., Tedeschi, G., et al. ( 2005 ) The unexpected structural role of glutamate synthase [4Fe-4S] (+1,+2) clusters as demonstrated by site-directed mutagenesis of conserved C residues at the N-terminus of the enzyme beta subunit. Arch Biochem Biophys 436: 355 – 366.en_US
dc.identifier.citedreferenceAnborgh, P.H., Parmeggiani, A., and Jonak, J. ( 1992 ) Site-directed mutagenesis of elongation factor Tu. The functional and structural role of residue Cys81. Eur J Biochem 208: 251 – 257.en_US
dc.identifier.citedreferenceArnold, W.P., Mittal, C.K., Katsuki, S., and Murad, F. ( 1977 ) Nitric oxide activates guanylate cyclase and increases guanosine 3′ : 5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74: 3203 – 3207.en_US
dc.identifier.citedreferenceAscenzi, P., Colasanti, M., Persichini, T., Muolo, M., Polticelli, F., Venturini, G., et al. ( 2000 ) Re-evaluation of amino acid sequence and structural consensus rules for cysteine-nitric oxide reactivity. Biol Chem 381: 623 – 627.en_US
dc.identifier.citedreferenceAulabaugh, A., and Schloss, J.V. ( 1990 ) Oxalyl hydroxamates as reaction-intermediate analogues for ketol-acid reductoisomerase. Biochemistry 29: 2824 – 2830.en_US
dc.identifier.citedreferenceBaba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., et al. ( 2006 ) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008.en_US
dc.identifier.citedreferenceBeckman, J.S. ( 1996 ) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9: 836 – 844.en_US
dc.identifier.citedreferenceBundy, R.E., Marczin, N., Chester, A.H., and Yacoub, M. ( 2000 ) A redox-based mechanism for nitric oxide-induced inhibition of DNA synthesis in human vascular smooth muscle cells. Br J Pharmacol 129: 1513 – 1521.en_US
dc.identifier.citedreferenceCruz-Ramos, H., Crack, J., Wu, G., Hughes, M.N., Scott, C., Thomson, A.J., et al. ( 2002 ) NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J 21: 3235 – 3244.en_US
dc.identifier.citedreferenceDe Groote, M.A., Granger, D., Xu, Y., Campbell, G., Prince, R., and Fang, F.C. ( 1995 ) Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci USA 92: 6399 – 6403.en_US
dc.identifier.citedreferenceDing, H., and Demple, B. ( 2000 ) Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc Natl Acad Sci USA 97: 5146 – 5150.en_US
dc.identifier.citedreferenceDurner, J., Knorzer, O.C., and Boger, P. ( 1993 ) Ketol-acid reductoisomerase from barley ( Hordeum vulgare ) (purification, properties, and specific inhibition). Plant Physiol 103: 903 – 910.en_US
dc.identifier.citedreferenceDykhuizen, R.S., Frazer, R., Duncan, C., Smith, C.C., Golden, M., Benjamin, N., and Leifert, C. ( 1996 ) Antimicrobial effect of acidified nitrite on gut pathogens: importance of dietary nitrate in host defense. Antimicrob Agents Chemother 40: 1422 – 1425.en_US
dc.identifier.citedreferenceFang, F.C. ( 1997 ) Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest 99: 2818 – 2825.en_US
dc.identifier.citedreferenceGerdes, S.Y., Scholle, M.D., Campbell, J.W., Balazsi, G., Ravasz, E., Daugherty, M.D., et al. ( 2003 ) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185: 5673 – 5684.en_US
dc.identifier.citedreferenceGoss, T.J., Perez-Matos, A., and Bender, R.A. ( 2001 ) Roles of glutamate synthase, gltBD, and gltF in nitrogen metabolism of Escherichia coli and Klebsiella aerogenes. J Bacteriol 183: 6607 – 6619.en_US
dc.identifier.citedreferenceHan, D., Canali, R., Garcia, J., Aguilera, R., Gallaher, T.K., and Cadenas, E. ( 2005 ) Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione. Biochemistry 44: 11986 – 11996.en_US
dc.identifier.citedreferenceHara, M.R., Cascio, M.B., and Sawa, A. ( 2006 ) GAPDH as a sensor of NO stress. Biochim Biophys Acta 1762: 502 – 509.en_US
dc.identifier.citedreferenceHashim, S., Kwon, D.H., Abdelal, A., and Lu, C.D. ( 2004 ) The arginine regulatory protein mediates repression by arginine of the operons encoding glutamate synthase and anabolic glutamate dehydrogenase in Pseudomonas aeruginosa. J Bacteriol 186: 3848 – 3854.en_US
dc.identifier.citedreferenceHondorp, E.R., and Matthews, R.G. ( 2004 ) Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli. PLoS Biol 2: e336.en_US
dc.identifier.citedreferenceHuang, B., and Chen, C. ( 2006 ) An ascorbate-dependent artifact that interferes with the interpretation of the biotin switch assay. Free Radic Biol Med 41: 562 – 567.en_US
dc.identifier.citedreferenceHyduke, D.R., Jarboe, L.R., Tran, L.M., Chou, K.J., and Liao, J.C. ( 2007 ) Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli. Proc Natl Acad Sci USA 104: 8484 – 8489.en_US
dc.identifier.citedreferenceIlbert, M., Horst, J., Ahrens, S., Winter, J., Graf, P.C., Lilie, H., and Jakob, U. ( 2007 ) The redox-switch domain of Hsp33 functions as dual stress sensor. Nat Struct Mol Biol 14: 556 – 563.en_US
dc.identifier.citedreferenceIshii, T., Sunami, O., Nakajima, H., Nishio, H., Takeuchi, T., and Hata, F. ( 1999 ) Critical role of sulfenic acid formation of thiols in the inactivation of glyceraldehyde-3-phosphate dehydrogenase by nitric oxide. Biochem Pharmacol 58: 133 – 143.en_US
dc.identifier.citedreferenceJaffrey, S.R., Erdjument-Bromage, H., Ferris, C.D., Tempst, P., and Snyder, S.H. ( 2001 ) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3: 193 – 197.en_US
dc.identifier.citedreferenceJi, X.B., and Hollocher, T.C. ( 1988 ) Reduction of nitrite to nitric oxide by enteric bacteria. Biochem Biophys Res Commun 157: 106 – 108.en_US
dc.identifier.citedreferenceJoyce, A.R., Reed, J.L., White, A., Edwards, R., Osterman, A., Baba, T., et al. ( 2006 ) Experimental and computational assessment of conditionally essential genes in Escherichia coli. J Bacteriol 188: 8259 – 8271.en_US
dc.identifier.citedreferenceKang, Y., Durfee, T., Glasner, J.D., Qiu, Y., Frisch, D., Winterberg, K.M., and Blattner, F.R. ( 2004 ) Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186: 4921 – 4930.en_US
dc.identifier.citedreferenceKarala, A.R., and Ruddock, L.W. ( 2007 ) Does s-methyl methanethiosulfonate trap the thiol-disulfide state of proteins? Antioxid Redox Signal 9: 527 – 531.en_US
dc.identifier.citedreferenceKarsten, W.E., and Viola, R.E. ( 1992 ) Identification of an essential cysteine in the reaction catalyzed by aspartate-beta-semialdehyde dehydrogenase from Escherichia coli. Biochim Biophys Acta 1121: 234 – 238.en_US
dc.identifier.citedreferenceKim, Y.M., Son, K., Hong, S.J., Green, A., Chen, J.J., Tzeng, E., et al. ( 1998 ) Inhibition of protein synthesis by nitric oxide correlates with cytostatic activity: nitric oxide induces phosphorylation of initiation factor eIF-2 alpha. Mol Med 4: 179 – 190.en_US
dc.identifier.citedreferenceKlatt, P., and Lamas, S. ( 2000 ) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267: 4928 – 4944.en_US
dc.identifier.citedreferenceKnowles, F.C. ( 1985 ) Reactions of lipoamide dehydrogenase and glutathione reductase with arsonic acids and arsonous acids. Arch Biochem Biophys 242: 1 – 10.en_US
dc.identifier.citedreferenceKroncke, K.D., Klotz, L.O., Suschek, C.V., and Sies, H. ( 2002 ) Comparing nitrosative versus oxidative stress toward zinc finger-dependent transcription. Unique role for NO. J Biol Chem 277: 13294 – 13301.en_US
dc.identifier.citedreferenceLancaster, J.R., Jr ( 1997 ) A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1: 18 – 30.en_US
dc.identifier.citedreferenceLancaster, J.R., Jr ( 2006 ) Nitroxidative, nitrosative, and nitrative stress: kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chem Res Toxicol 19: 1160 – 1174.en_US
dc.identifier.citedreferenceLangley, D., and Guest, J.R. ( 1977 ) Biochemical genetics of the alpha-keto acid dehydrogenase complexes of Escherichia coli K12: isolation and biochemical properties of deletion mutants. J Gen Microbiol 99: 263 – 276.en_US
dc.identifier.citedreferenceLeichert, L.I., and Jakob, U. ( 2004 ) Protein thiol modifications visualized in vivo. PLoS Biol 2: e333.en_US
dc.identifier.citedreferenceLi Calzi, M., and Poole, L.B. ( 1997 ) Requirement for the two AhpF cystine disulfide centers in catalysis of peroxide reduction by alkyl hydroperoxide reductase. Biochemistry 36: 13357 – 13364.en_US
dc.identifier.citedreferenceLiu, X.I., Korde, N., Jakob, U., and Leichert, L.I. ( 2006 ) CoSMoS: conserved sequence motif search in the proteome. BMC Bioinformatics 7: 37.en_US
dc.identifier.citedreferenceMcGuire, K.A., Siggaard-Andersen, M., Bangera, M.G., Olsen, J.G., and von Wettstein-Knowles, P. ( 2001 ) beta-Ketoacyl-[acyl carrier protein] synthase I of Escherichia coli: aspects of the condensation mechanism revealed by analyses of mutations in the active site pocket. Biochemistry 40: 9836 – 9845.en_US
dc.identifier.citedreferenceMaragos, C.M., Morley, D., Wink, D.A., Dunams, T.M., Saavedra, J.E., Hoffman, A., et al. ( 1991 ) Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. J Med Chem 34: 3242 – 3247.en_US
dc.identifier.citedreferenceMassey, V., and Veeger, C. ( 1960 ) On the reaction mechanism of lipoyl dehydrogenase. Biochim Biophys Acta 40: 184 – 185.en_US
dc.identifier.citedreferenceMeers, J.L., Tempest, D.W., and Brown, C.M. ( 1970 ) ‘Glutamine (amide): 2-oxoglutarate amino transferase oxido-reductase (NADP); an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol 64: 187 – 194.en_US
dc.identifier.citedreferencede Mendoza, D., Klages Ulrich, A., and Cronan, J.E., Jr ( 1983 ) Thermal regulation of membrane fluidity in Escherichia coli. Effects of overproduction of beta-ketoacyl-acyl carrier protein synthase I. J Biol Chem 258: 2098 – 2101.en_US
dc.identifier.citedreferenceMiller, R.E., and Stadtman, E.R. ( 1972 ) Glutamate synthase from Escherichia coli. An iron-sulfide flavoprotein. J Biol Chem 247: 7407 – 7419.en_US
dc.identifier.citedreferenceMohr, S., Hallak, H., de Boitte, A., Lapetina, E.G., and Brune, B. ( 1999 ) Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 274: 9427 – 9430.en_US
dc.identifier.citedreferenceMoncada, S., Palmer, R.M., and Higgs, E.A. ( 1991 ) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109 – 142.en_US
dc.identifier.citedreferenceMurzin, A.G., Brenner, S.E., Hubbard, T., and Chothia, C. ( 1995 ) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247: 536 – 540.en_US
dc.identifier.citedreferenceNathan, C. ( 1992 ) Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051 – 3064.en_US
dc.identifier.citedreferenceNeidhardt, F.C., Bloch, P.L., and Smith, D.F. ( 1974 ) Culture medium for enterobacteria. J Bacteriol 119: 736 – 747.en_US
dc.identifier.citedreferenceNunoshiba, T., deRojas-Walker, T., Wishnok, J.S., Tannenbaum, S.R., and Demple, B. ( 1993 ) Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci USA 90: 9993 – 9997.en_US
dc.identifier.citedreferenceOrme-Johnson, W.H., and Orme-Johnson, N.R. ( 1978 ) Overview of iron–sulfur proteins. Methods Enzymol 53: 259 – 268.en_US
dc.identifier.citedreferencePoole, L.B. ( 2005 ) Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys 433: 240 – 254.en_US
dc.identifier.citedreferencePoole, L.B., Karplus, P.A., and Claiborne, A. ( 2004 ) Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 44: 325 – 347.en_US
dc.identifier.citedreferenceReitzer, L. ( 2003 ) Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57: 155 – 176.en_US
dc.identifier.citedreferenceRhee, K.Y., Erdjument-Bromage, H., Tempst, P., and Nathan, C.F. ( 2005 ) S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci USA 102: 467 – 472.en_US
dc.identifier.citedreferenceSchrammel, A., Gorren, A.C., Schmidt, K., Pfeiffer, S., and Mayer, B. ( 2003 ) S-nitrosation of glutathione by nitric oxide, peroxynitrite, and (*)NO/O(2)(*-). Free Radic Biol Med 34: 1078 – 1088.en_US
dc.identifier.citedreferenceSliskovic, I., Raturi, A., and Mutus, B. ( 2005 ) Characterization of the S-denitrosation activity of protein disulfide isomerase. J Biol Chem 280: 8733 – 8741.en_US
dc.identifier.citedreferenceSpiro, S. ( 2006 ) Nitric oxide-sensing mechanisms in Escherichia coli. Biochem Soc Trans 34: 200 – 202.en_US
dc.identifier.citedreferenceStamler, J.S., Singel, D.J., and Loscalzo, J. ( 1992 ) Biochemistry of nitric oxide and its redox-activated forms. Science 258: 1898 – 1902.en_US
dc.identifier.citedreferenceStamler, J.S., Toone, E.J., Lipton, S.A., and Sucher, N.J. ( 1997 ) (S) NO signals: translocation, regulation, and a consensus motif. Neuron 18: 691 – 696.en_US
dc.identifier.citedreferenceSun, J., Steenbergen, C., and Murphy, E. ( 2006 ) S-nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid Redox Signal 8: 1693 – 1705.en_US
dc.identifier.citedreferenceTempest, D.W., Meers, J.L., and Brown, C.M. ( 1970 ) Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem J 117: 405 – 407.en_US
dc.identifier.citedreferenceVanoni, M.A., and Curti, B. ( 1999 ) Glutamate synthase: a complex iron-sulfur flavoprotein. Cell Mol Life Sci 55: 617 – 638.en_US
dc.identifier.citedreferenceVanoni, M.A., Edmondson, D.E., Zanetti, G., and Curti, B. ( 1992 ) Characterization of the flavins and the iron-sulfur centers of glutamate synthase from Azospirillum brasilense by absorption, circular dichroism, and electron paramagnetic resonance spectroscopies. Biochemistry 31: 4613 – 4623.en_US
dc.identifier.citedreferenceVanoni, M.A., Verzotti, E., Zanetti, G., and Curti, B. ( 1996 ) Properties of the recombinant beta subunit of glutamate synthase. Eur J Biochem 236: 937 – 946.en_US
dc.identifier.citedreferenceWesterfeld, W.W. ( 1945 ) A colorimetric determination of blood acetoin. J Biol Chem 161: 495 – 502.en_US
dc.identifier.citedreferenceWitkowski, A., Joshi, A.K., and Smith, S. ( 2002 ) Mechanism of the beta-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase. Biochemistry 41: 10877 – 10887.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.