Show simple item record

Enteral versus Parenteral Nutrition: Effect on Intestinal Barrier Function

dc.contributor.authorYang, Huaen_US
dc.contributor.authorFeng, Yongjiaen_US
dc.contributor.authorSun, Xiaoyien_US
dc.contributor.authorTeitelbaum, Daniel H.en_US
dc.date.accessioned2010-06-01T19:13:13Z
dc.date.available2010-06-01T19:13:13Z
dc.date.issued2009-05en_US
dc.identifier.citationYang, Hua; Feng, Yongjia; Sun, Xiaoyi; Teitelbaum, Daniel H. (2009). "Enteral versus Parenteral Nutrition: Effect on Intestinal Barrier Function." Annals of the New York Academy of Sciences 1165(1 Molecular Structure and Function of the Tight Junction From Basic Mechanisms to Clinical Manifestations ): 338-346. <http://hdl.handle.net/2027.42/72404>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72404
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19538325&dopt=citationen_US
dc.format.extent3083955 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights© 2009 The New York Academy of Sciencesen_US
dc.subject.otherEpithelial Barrier Functionen_US
dc.subject.otherTight Junctionen_US
dc.subject.otherIntraepithelial Lymphocyteen_US
dc.subject.otherInterleukin-7 (IL-7)en_US
dc.subject.otherInterferon Gamma (IFN-Γ)en_US
dc.subject.otherIL-10en_US
dc.subject.otherMouse, Epithelial Cellsen_US
dc.titleEnteral versus Parenteral Nutrition: Effect on Intestinal Barrier Functionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Surgery, the University of Michigan Medical School, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDepartment of General Surgery, Xingqiao Hospital, Chongqing, Chinaen_US
dc.identifier.pmid19538325en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72404/1/j.1749-6632.2009.04026.x.pdf
dc.identifier.doi10.1111/j.1749-6632.2009.04026.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceAnderson, G. & E. Steinberg. 1986. DRG's and specialized nutritional support: the need for reform. J. Parenter. Enteral Nutr. 10: 3 – 10.en_US
dc.identifier.citedreferenceShou, J., J. Lappin, E.A. Minnard & J.M. Daly. 1994. Total parenteral nutrition, bacterial translocation, and host immune function. Am. J. Surg. 167: 145 – 150.en_US
dc.identifier.citedreferenceKansagra, K., B. Stoll, C. Rognerud, et al. 2003. Total parenteral nutrition adversely affects gut barrier function in neonatal piglets. Am. J. Physiol. Gastrointest. Liver Physiol.en_US
dc.identifier.citedreferencePeterson, C.A., H.V. Carey, P.L. Hinton, et al. 1997. GH elevates serum IGF-I levels but does not alter mucosal atrophy in parenterally fed rats. Am. J. Physiol. 272 ( 5 Pt 1 ): G1100 – 1108.en_US
dc.identifier.citedreferenceMoore, F., E. Moore & T. Jones. 1989. TEN vs. TPN following major abdominal trauma: reduced septic morbidity. J. Trauma 29: 916 – 923.en_US
dc.identifier.citedreferenceKudsk, K., M. Croce, T. Fabian, et al. 1992. Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann. Surg. 215: 503 – 511.en_US
dc.identifier.citedreferenceDominioni, L., F. Gnes, R. Dionigi, et al. 1976. Histopathological studies on dog lymphoid structures during malnutrition and total parenteral nutrition. Bollettino dell Istituto Sieroterapico Milanese 55: 311 – 316.en_US
dc.identifier.citedreferenceRenegar, K.B., C.D. Johnson, R.C. Dewitt, et al. 2001. Impairment of mucosal immunity by total parenteral nutrition: requirement for IgA in murine nasotracheal anti-influenza immunity. J. Immunol. 166: 819 – 825.en_US
dc.identifier.citedreferenceKudsk, K.A., J. Li & K.B. Renegar. 1996. Loss of upper respiratory tract immunity with parenteral feeding. Ann. Surg. 223: 629 – 635; discussion 635–638.en_US
dc.identifier.citedreferenceNey, D.M. 1999. Effects of insulin-like growth factor-I and growth hormone in models of parenteral nutrition. [Review][41 refs]. JPEN J. Parenter. Enteral Nutr. 23 ( 6 Suppl ): S184 – 189.en_US
dc.identifier.citedreferenceYang, H., R. Finaly & D.H. Teitelbaum. 2003. Alteration in epithelial permeability and ion transport in a mouse model of total parenteral nutrition. Crit. Care Med. 31: 1118 – 1125.en_US
dc.identifier.citedreferenceBuchman, A., A. Moukarzel, S. Bhuta, et al. 1995. Parenteral nutrition is associated with intestinal morphologic and functional changes in humans. J. Paren. Enter. Nutr. 19: 453 – 460.en_US
dc.identifier.citedreferenceMadara, J. & J. Stafford. 1989. Interferon-g directly affeccts barrier function of cultured intestinal epithelial monolayers. J. Clin. Invest. 83: 724 – 727.en_US
dc.identifier.citedreferencePlanchon, S., C. Martins, R. Guerrant & J. Roche. 1994. Regulation of intestinal epithelial barrier function by TGF-b1. J. Immunol. 153: 5730 – 5738.en_US
dc.identifier.citedreferenceMadsen, K.L., S.A. Lewis, M.M. Tavernini, et al. 1997. Interleukin 10 prevents cytokine-induced disruption of T84 monolayer barrier integrity and limits chloride secretion. Gastroenterology 113: 151 – 159.en_US
dc.identifier.citedreferenceColgan, S.P., M.B. Resnick, C.A. Parkos, et al. 1994. IL-4 directly modulates function of a model human intestinal epithelium. J. Immunol. 153: 2122 – 2129.en_US
dc.identifier.citedreferenceSpies, M., V.L. Chappell, M.R. Dasu, et al. 2002. Role of TNF-alpha in gut mucosal changes after severe burn. Am. J. Physiol. Gastrointest. Liver Physiol. 283: G703 – 708.en_US
dc.identifier.citedreferenceYang, H., I. Kiristioglu, Y. Fan, et al. 2002. Interferon-gamma expression by intraepithelial lymphocytes results in a loss of epithelial barrier function in a mouse model of total parenteral nutrition. Ann. Surg. 236: 226 – 234.en_US
dc.identifier.citedreferenceIijima, H., I. Takahashi & H. Kiyono. 2001. Mucosal immune network in the gut for the control of infectious diseases. Rev. Med. Virol. 11: 117 – 133.en_US
dc.identifier.citedreferenceTakahashi, I. & H. Kiyono. 1999. Gut as the largest immunologic tissue. JPEN J. Parenter. Enteral Nutr. 23 ( 5 Suppl S ): S7 – S12.en_US
dc.identifier.citedreferenceHershberg, R.M. & L.F. Mayer. 2000. Antigen processing and presentation by intestinal epithelial cells – polarity and complexity. Immunol. Today 21: 123 – 128.en_US
dc.identifier.citedreferenceProbert, C.S., L.J. Saubermann, S. Balk & R.S. Blumberg. 2007. Repertoire of the alpha beta T-cell receptor in the intestine. Immunol. Rev. 215: 215 – 225.en_US
dc.identifier.citedreferenceKronenberg, M. & W.L. Havran. 2007. Frontline T cells: gammadelta T cells and intraepithelial lymphocytes. Immunol. Rev. 215: 5 – 7.en_US
dc.identifier.citedreferenceBeagley, K.W. & A.J. Husband. 1998. Intraepithelial lymphocytes: origins, distribution, and function. Crit. Rev. Immunol. 18: 237 – 254.en_US
dc.identifier.citedreferenceMosley, R.L. & J.R. Klein. 1992. A rapid method for isolating murine intestine intraepithelial lymphocytes with high yield and purity. J. Immunol. Methods 156: 19 – 26.en_US
dc.identifier.citedreferenceIshiguro, Y., H. Kanazawa & A. Munakata. 1999. Approaches to intestinal gamma delta T cells. Molecular Medicine: Novel Findings of Gene Diagnosis, Regulation of Gene Expression, and Gene Therapy 1172: 131 – 136.en_US
dc.identifier.citedreferenceLefrancois, L. & L. Puddington. 1995. Extrathymic intestinal T-cell development: virtual reality? Immunol. Today 16: 16 – 21.en_US
dc.identifier.citedreferenceRocha, B., P. Vassalli & D. Guy-Grand. 1994. Thymic and extrathymic origins of gut intraepithelial lymphocyte populations in mice. J. Exp. Med. 180: 681 – 686.en_US
dc.identifier.citedreferenceRocha, B., D. Guy-Grand & P. Vassalli. 1995. Extrathymic T cell differentiation. Curr. Opin. Immunol. 7: 235 – 242.en_US
dc.identifier.citedreferenceEbert, E. 1990. Intra-epithelial lymphocytes: interferon-gamma production and suppressor/cytotoxic activities. Clin. Exp. Immunol. 82: 81 – 85.en_US
dc.identifier.citedreferenceKiristioglu, I., P. Antony, Y. Fan, et al. 2002. Total parenteral nutrition-associated changes in mouse intestinal intraepithelial lymphocytes. Dig. Dis. Sci. 47: 1147 – 1157.en_US
dc.identifier.citedreferenceFujihashi, K., S. Kawabata, T. Hiroi, et al. 1996. Interleukin 2 (IL-2) and interleukin 7 (IL-7) reciprocally induce IL-7 and IL-2 receptors on gamma delta T-cell receptor-positive intraepithelial lymphocytes. Proc. Natl. Acad. Sci. USA 93: 3613 – 3618.en_US
dc.identifier.citedreferenceEbert, E.C. & A.I. Roberts. 1996. IL-4 down-regulates the responsiveness of human intraepithelial lymphocytes. Clin. Exp. Immunol. 105: 556 – 560.en_US
dc.identifier.citedreferenceWang, Q., C. Fang & P. Hasselgren. 2001. Intestinal permeability is reduced and IL-10 levels are increased in septic IL-6 knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281: R1013 – 1023.en_US
dc.identifier.citedreferenceLundqvist, C., S. Melgar, M.M. Yeung, et al. 1996. Intraepithelial lymphocytes in human gut have lytic potential and a cytokine profile that suggest T helper 1 and cytotoxic functions. J. Immunol. 157: 1926 – 1934.en_US
dc.identifier.citedreferenceKiristioglu, I. & D.H. Teitelbaum. 1998. Alteration of the intestinal intraepithelial lymphocytes during total parenteral nutrition. J. Surg. Res. 79: 91 – 96.en_US
dc.identifier.citedreferenceFujihashi, K., M. Yamamoto, J.R. McGhee, et al. 1993. Function of alpha beta TCR+ intestinal intraepithelial lymphocytes: Th1- and Th2-type cytokine production by CD4+CD8- and CD4+CD8+ T cells for helper activity. Int. Immunol. 5: 1473 – 1481.en_US
dc.identifier.citedreferenceKamanaka, M., S. Kim, Y. Wan, et al. 2006. Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity 25: 941 – 952.en_US
dc.identifier.citedreferenceFujihashi, K., M. Yamamoto, J.R. McGhee & H. Kiyono. 1993. Alpha beta T cell receptor-positive intraepithelial lymphocytes with CD4+, CD8- and CD4+, CD8+ phenotypes from orally immunized mice provide Th2-like function for B cell responses. J. Immunol. 151: 6681 – 6691.en_US
dc.identifier.citedreferenceCroitoru, K. & P. Ernst. 1993. Intraepithelial lymphocyte lineage and function. The interactions between the intestinal epithelium and the intraepithelial lymphocyte. In Mucosal Immunology: Intraepithelial Lymphocytes, Vol. 9. H. Kiyono & J. McGhee, Eds.: 79 – 88. Raven Press, Ltd. New York.en_US
dc.identifier.citedreferenceShaw, S., A. Hermanowski-Vosatka, T. Shibahara, et al. 1998. Migration of intestinal intraepithelial lymphocytes into a polarized epithelial monolayer. Am. J. Physiol. 275 ( 3 Pt 1 ): G584 – 591.en_US
dc.identifier.citedreferenceBenmerah, A., A. Badrichani, K. Ngohou, et al. 1994. Homotypic aggregation of CD103 (alpha E beta 7)+ lymphocytes by an anti-CD103 antibody, HML-4. Eur. J. Immunol. 24: 2243 – 2249.en_US
dc.identifier.citedreferenceLaky, K., L. Lefrancois, E. Lingenheld & L. Puddington. 2000. Enterocyte expression of interleukin 7 induces development of gamma delta T cells and Peyer's patches. J. Exp. Med. 191: 1569 – 1580.en_US
dc.identifier.citedreferenceLaky, K., L. Lefrancois, U. von Freeden-Jeffry, et al. 1998. The role of IL-7 in thymic and extrathymic development of TCR gamma delta cells. J. Immunol. 161: 707 – 713.en_US
dc.identifier.citedreferenceDozmorov, I.M. & R.A. Miller. 1996. Regulatory interactions between virgin and memory CD4 T lymphocytes. Cell Immunol. 172: 141 – 148.en_US
dc.identifier.citedreferenceYang, H., I. Kiristioglu, Y. Fan, et al. 2002. Interferon-gamma expression by intraepithelial lymphocytes results in a loss of epithelial barrier function in a mouse model of total parenteral nutrition. Ann. Surg. 236: 226 – 234.en_US
dc.identifier.citedreferenceCiacci, C., Y.R. Mahida, A. Dignass, et al. 1993. Functional interleukin-2 receptors on intestinal epithelial cells. J. Clin. Invest. 92: 527 – 532.en_US
dc.identifier.citedreferenceWang, W.Y., N. Smail, P. Wang & I.H. Chaudry. 1998. Increased gut permeability after hemorrhage is associated with upregulation of local and systemic Il-6. J. Surg. Res. 79: 39 – 46.en_US
dc.identifier.citedreferencePlanchon, S.M., C.A. Martins, R.L. Guerrant, J.K. Roche. 1994. Regulation of intestinal epithelial barrier function by TGF-beta 1. Evidence for its role in abrogating the effect of a T cell cytokine. J. Immunol. 153: 5730 – 5739.en_US
dc.identifier.citedreferenceSchmitz, H., M. Fromm, C.J. Bentzel, et al. 1999. Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J. Cell Sci. 112 ( Pt 1 ): 137 – 146.en_US
dc.identifier.citedreferenceYang, H., Y. Fan & D.H. Teitelbaum. 2003. Intraepithelial lymphocyte-derived interferon-gamma evokes enterocyte apoptosis with parenteral nutrition in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 284: G629 – 637.en_US
dc.identifier.citedreferenceYang, H. & D.H. Teitelbaum. 2003. Intraepithelial lymphocyte-derived interferon-gamma evokes enterocyte apoptosis with parenteral nutrition in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 284: G629 – G637.en_US
dc.identifier.citedreferenceYang, H., A. Spencer & D.H. Teitelbaum. 2005. Interleukin-7 administration alters intestinal intraepithelial lymphocyte phenotype and function in vivo. Cytokine; e-published ahead of print.en_US
dc.identifier.citedreferenceYang, H., X. Sun, E.Q. Haxhija & D.H. Teitelbaum. 2007. Intestinal epithelial cell-derived interleukin-7: A mechanism for the alteration of intraepithelial lymphocytes in a mouse model of total parenteral nutrition. Am. J. Physiol. Gastrointest. Liver Physiol. 292: G84 – 91.en_US
dc.identifier.citedreferenceWildhaber, B.E., H. Yang, A.U. Spencer & D.H. Teitelbaum. 2005. Lack of enteral nutrition – effects on the intestinal immune system. J. Surg. Res. 123 ( 1 ): 8 – 16.en_US
dc.identifier.citedreferenceYang, H., D.L. Gumucio, & D.H. Teitelbaum. 2008. Intestinal specific over-expression of Interleukin-7 attenuates the alternation of intestinal intraepithelial lymphocytes after TPN administration. Ann. Surg. 248 ( 5 ): 849 – 856.en_US
dc.identifier.citedreferenceSun, X., H. Yang, K. Nose, et al. 2007. Decline in intestinal mucosal IL-10 expression and decreased intestinal barrier function in a mouse model of total parenteral nutrition. Am. J. Physiol. Gastrointest. Liver Physiol.; E-pub in advance.en_US
dc.identifier.citedreferenceWang, F., B. Schwarz, W. Graham, et al. 2006. IFN-gamma-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroent. 131: 1153 – 1163.en_US
dc.identifier.citedreferenceTurner, J.R. 2005. Molecular basis of epithelial barrier regulation from basic mechanisms to clinical application. Am. J. Pathol. 169: 1901 – 1909.en_US
dc.identifier.citedreferenceZeissig, S., C. Bojarski, N. Buergel, et al. 2004. Downregulation of epithelial apoptosis and barrier repair in active Crohn's disease by tumour necrosis factor alpha antibody treatment. Gut 53: 1295 – 1302.en_US
dc.identifier.citedreferenceBoismenu, R. & W.L. Havran. 1994. Modulation of epithelial cell growth by intraepithelial gamma delta T cells. Science 266: 1253 – 1255.en_US
dc.identifier.citedreferenceYang, H., P.A. Antony, B.E. Wildhaber & D.H. Teitelbaum. 2004. Intestinal intraepithelial lymphocyte gammadelta-T cell-derived keratinocyte growth factor modulates epithelial growth in the mouse. J. Immunol. 172: 4151 – 4158.en_US
dc.identifier.citedreferenceYang, H., B. Wildhaber, Y. Tazuke & D.H. Teitelbaum. 2002. 2002 Harry M. Vars Research Award. Keratinocyte growth factor stimulates the recovery of epithelial structure and function in a mouse model of total parenteral nutrition. JPEN J. Parenter. Enteral Nutr. 26: 333 – 340; discussion 340–341.en_US
dc.identifier.citedreferenceYang, H., B.E. Wildhaber & D.H. Teitelbaum. 2003. 2003 Harry M. Vars Research Award. Keratinocyte growth factor improves epithelial function after massive small bowel resection. JPEN J. Parenter. Enteral Nutr. 27: 198 – 206; discussion 206–207.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.