Show simple item record

Diffusion of Alexa Fluor 488-Conjugated Dendrimers in Rat Aortic Tissue

dc.contributor.authorCho, Brenda S.en_US
dc.contributor.authorRoelofs, Karen J.en_US
dc.contributor.authorMajoros, Istvan J.en_US
dc.contributor.authorBaker, James R. Jr.en_US
dc.contributor.authorStanley, James C.en_US
dc.contributor.authorHenke, Peter K.en_US
dc.contributor.authorUpchurch, Gilbert R.en_US
dc.date.accessioned2010-06-01T19:18:14Z
dc.date.available2010-06-01T19:18:14Z
dc.date.issued2006-11en_US
dc.identifier.citationCHO, BRENDA S . ; ROELOFS, KAREN J . ; MAJOROS, ISTVAN J . ; BAKER, JAMES R . ; STANLEY, JAMES C . ; HENKE, PETER K . ; UPCHURCH, GILBERT R . (2006). "Diffusion of Alexa Fluor 488-Conjugated Dendrimers in Rat Aortic Tissue." Annals of the New York Academy of Sciences 1085(1 The Abdominal Aortic Aneurysm: Genetics, Pathophysiology, and Molecular Biology ): 294-305. <http://hdl.handle.net/2027.42/72448>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72448
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17182946&dopt=citationen_US
dc.description.abstractIn this study, the distribution of labeled dendrimers in native and aneurysmal rat aortic tissue was examined. Adult male rats underwent infrarenal aorta perfusion with generation 5 (G5) acetylated Alexa Fluor 488-conjugated dendrimers for varying lengths of time. In a second set of experiments, rats underwent aortic elastase perfusion followed by aortic dendrimer perfusion 7 days later. Aortic diameters were measured prior to and postelastase perfusion, and again on the day of harvest. Aortas were harvested 0, 12, or 24 h postperfusion, fixed, and mounted. Native aortas were harvested and viewed as negative controls. Aortic cross-sections were viewed and imaged using confocal microscopy. Dendrimers were quantified (counts high-powered field). Results were evaluated by repeated measures ANOVA and Student's t -test. We found that in native aortas, dendrimers penetrated the aortic wall in all groups. For all perfusion times, fewer dendrimers were present as time between dendrimer perfusion and aortic harvest increased. Longer perfusion times resulted in increased diffusion of dendrimers throughout the aortic wall. By 24 h, the majority of the dendrimers were through the wall. Dendrimers in aneurysmal aortas, on day 0 postdendrimer perfusion, diffused farther into the aortic wall than controls. In conclusion, this study documents labeled dendrimers delivered intra-arterially to native rat aortas in vivo , and the temporal diffusion of these molecules within the aortic wall. Increasing perfusion time and length of time prior to harvest resulted in continued dendrimer diffusion into the aortic wall. These preliminary data provide a novel mechanism whereby local inhibitory therapy may be delivered locally to aortic tissue.en_US
dc.format.extent323693 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights2006 New York Academy of Sciencesen_US
dc.subject.otherAortaen_US
dc.subject.otherAneurysmen_US
dc.subject.otherDendrimeren_US
dc.subject.otherDrug Deliveryen_US
dc.subject.otherNanotechnologyen_US
dc.subject.otherPAMAMen_US
dc.titleDiffusion of Alexa Fluor 488-Conjugated Dendrimers in Rat Aortic Tissueen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Surgery, Jobst Vascular Research Laboratories, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, Ann Arbor, MI, USAen_US
dc.identifier.pmid17182946en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72448/1/annals.1383.004.pdf
dc.identifier.doi10.1196/annals.1383.004en_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceBrieger, D. & E. Topol. 1997. Local delivery systems and prevention of restenosis. Cardiovasc. Res. 35: 405 413.en_US
dc.identifier.citedreferenceSakharov, D.V., A.F. Jie, M.E. Bekkers, et al. 2001. Polylysine as a vehicle for extracellular matrix-targeted local drug delivery, providing high accumulation and long-term retention within the vascular wall. Arterioscler. Thromb. Vasc. Biol. 21: 943 948.en_US
dc.identifier.citedreferenceMajoros, I.J., T.P. Thomas, C.B. Mehta & J.R. Baker. 2005. Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J. Med. Chem. 48: 5892 5899.en_US
dc.identifier.citedreferenceMalik, N., R. Wiwattanapatapee, R. Klopsch, et al. 2000. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control Release. 65: 133 148. Erratum in: J. Control Release 2000. 68: 299 302.en_US
dc.identifier.citedreferencePatri, A.K., I.J. Majoros & J.R. Baker. 2002. Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol. 6: 466 471.en_US
dc.identifier.citedreferenceLesniak, W., A.U. Bielinska, K. Sun, et al. 2005. Silver dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano. Lett. 5: 2123 2130.en_US
dc.identifier.citedreferenceBosman, A.W., H.M. Janssen & E.W. Meijer. 1999. About dendrimers: structure, physical properties, and applications. Chem. Rev. 99: 1665 1688.en_US
dc.identifier.citedreferenceAilawadi, G., J.L. Eliason & G.R. Upchurch Jr. 2003. Current concepts in the pathogenesis of abdominal aortic aneurysm. J. Vasc. Surg. 38: 584 588.en_US
dc.identifier.citedreferencePetrinec, D., S. Liao, D.R. Holmes, et al. 1996. Doxycycline inhibition of aneurysmal degeneration in an elastase-induced rat model of abdominal aortic aneurysm: preservation of aortic elastin associated with suppressed production of 92-kD gelatinase. J. Vasc. Surg. 23: 336 346.en_US
dc.identifier.citedreferenceSho, E., J. Chu, M. Sho, et al. 2004. Continuous periaortic infusion improves doxycycline efficacy in experimental aortic aneurysms. J. Vasc. Surg. 39: 1312 1321.en_US
dc.identifier.citedreferenceThompson, R.W., S. Liao & J.A. Curci. 1998. Therapeutic potential of tetracycline derivatives to suppress the growth of abdominal aortic aneurysms. Adv. Dent. Res. 12: 159 165.en_US
dc.identifier.citedreferenceCurci, J.A., D. Petrinec, S. Liao, et al. 1998. Pharmacologic suppression of experimental abdominal aortic aneurysms: a comparison of doxycycline and four chemically modified tetracyclines. J. Vasc. Surg. 28: 1082 1093.en_US
dc.identifier.citedreferenceBaxter, B.T., W.H. Pearce, E.A. Waltke, et al. 2002. Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: report of a prospective (phase II) multicenter study. J. Vasc. Surg. 36: 1 12.en_US
dc.identifier.citedreferenceAnidjar, S., J.L. Salzmann, D. Gentric, et al. 1990. Elastase-induced experimental aneurysms in rats. Circulation 82: 973 981.en_US
dc.identifier.citedreferencePatri, A.K., J.F. Kukowska-Latallo & J.R. Baker. 2005. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Deliv. Rev. 57: 2203 2214.en_US
dc.identifier.citedreferenceQuintana, A., E. Raczka, L. Piehler, et al. 2002. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res. 19: 1310 1316.en_US
dc.identifier.citedreferencePanchuk-Voloshina, N., R.P. Haugland, J. Bishop-Stewart, et al. 1999. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J. Histochem. Cytochem. 47: 1179 1188.en_US
dc.identifier.citedreferenceLovich, M.A. & E.R. Edelman. 1995. Mechanisms of transmural heparin transport in the rat abdominal aorta after local vascular delivery. Circ. Res. 77: 1143 1150.en_US
dc.identifier.citedreferencePrice, R.J., D.M. Skyba, S. Kaul & T.C. Skalak. 1998. Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 98: 1264 1267.en_US
dc.identifier.citedreferenceAilawadi, G., J.L. Eliason, K.J. Roelofs, et al. 2004. Gender differences in experimental aortic aneurysm formation. Arterioscler. Thromb. Vasc. Biol. 24: 2116 2122.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.