Show simple item record

Th17 cells in human disease

dc.contributor.authorTesmer, Laura A.en_US
dc.contributor.authorLundy, Steven K.en_US
dc.contributor.authorSarkar, Sujataen_US
dc.contributor.authorFox, David A.en_US
dc.date.accessioned2010-06-01T19:18:39Z
dc.date.available2010-06-01T19:18:39Z
dc.date.issued2008-06en_US
dc.identifier.citationTesmer, Laura A.; Lundy, Steven K.; Sarkar, Sujata; Fox, David A. (2008). "Th17 cells in human disease." Immunological Reviews 223(1 Immunotherapeutics ): 87-113. <http://hdl.handle.net/2027.42/72455>en_US
dc.identifier.issn0105-2896en_US
dc.identifier.issn1600-065Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72455
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18613831&dopt=citationen_US
dc.description.abstractOur understanding of the role of T cells in human disease is undergoing revision as a result of the discovery of T-helper 17 (Th17) cells, a unique CD4 + T-cell subset characterized by production of interleukin-17 (IL-17). IL-17 is a highly inflammatory cytokine with robust effects on stromal cells in many tissues. Recent data in humans and mice suggest that Th17 cells play an important role in the pathogenesis of a diverse group of immune-mediated diseases, including psoriasis, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and asthma. Initial reports also propose a role for Th17 cells in tumorigenesis and transplant rejection. Important differences, as well as many similarities, are emerging when the biology of Th17 cells in the mouse is compared with corresponding phenomena in humans. As our understanding of human Th17 biology grows, the mechanisms underlying many diseases are becoming more apparent, resulting in a new appreciation for both previously known and more recently discovered cytokines, chemokines, and feedback mechanisms. Given the strong association between excessive Th17 activity and human disease, new therapeutic approaches targeting Th17 cells are highly promising, but the potential safety of such treatments may be limited by the role of these cells in normal host defenses against infection.en_US
dc.format.extent702352 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 Blackwell Munksgaarden_US
dc.subject.otherT Cellsen_US
dc.subject.otherInterleukinsen_US
dc.subject.otherAutoimmunityen_US
dc.subject.otherHuman Diseaseen_US
dc.subject.otherIL-17en_US
dc.subject.otherIL-23en_US
dc.titleTh17 cells in human diseaseen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDivision of Rheumatology, Department of Internal Medicine and Rheumatic Disease Core Center, University of Michigan, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationotherDivision of Rheumatology and the Arizona Arthritis Center Department of Internal Medicine, University of Arizona, Tucson, AZ, USA.en_US
dc.identifier.pmid18613831en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72455/1/j.1600-065X.2008.00628.x.pdf
dc.identifier.doi10.1111/j.1600-065X.2008.00628.xen_US
dc.identifier.sourceImmunological Reviewsen_US
dc.identifier.citedreferenceLangowski J, Kastelein R, Oft M. Swords into plowshares: IL-23 repurposes tumor immune surveillance. Trends Immunol 2007; 28: 207 – 212.en_US
dc.identifier.citedreferenceMosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136: 2348 – 2257.en_US
dc.identifier.citedreferenceHarrington LE, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6: 1123 – 1132.en_US
dc.identifier.citedreferencePark H, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6: 1133 – 1141.en_US
dc.identifier.citedreferenceYao Z, et al. Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 1995; 3: 811 – 821.en_US
dc.identifier.citedreferenceYao Z, et al. Human IL-17: a novel cytokine derived from T cells. J Immunol 1995; 155: 5483 – 5486.en_US
dc.identifier.citedreferenceFossiez F, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996; 183: 2593 – 2603.en_US
dc.identifier.citedreferenceMurphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol 2002; 2: 933 – 944.en_US
dc.identifier.citedreferenceLangrish CL, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201: 233 – 240.en_US
dc.identifier.citedreferenceAggarwal S, Ghilardi N, Xie M-H, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003; 278: 1910 – 1914.en_US
dc.identifier.citedreferenceBettelli E, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441: 235 – 238.en_US
dc.identifier.citedreferenceMangan PR, et al. Transforming growth factor-beta induces development of the TH17 lineage. Nature 2006; 441: 231 – 234.en_US
dc.identifier.citedreferenceVeldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24: 179 – 189.en_US
dc.identifier.citedreferenceSutton C, Brereton C, Keogh B, Mills KHG, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 2006; 203: 1685 – 1691.en_US
dc.identifier.citedreferenceNakae S, Iwakura Y, Suto H, Galli SJ. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol 2007; 81: 1258 – 1268.en_US
dc.identifier.citedreferenceLi MO, Wan YY, Sanjabi S, Robertson A-KL, Flavell RA. Transforming growth factor-beta; regulation of immune responses. Annu Rev Immunol 2006; 24: 99 – 146.en_US
dc.identifier.citedreferenceXu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4+CD25−Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 2007; 178: 6725 – 6729.en_US
dc.identifier.citedreferenceAnnunziato F, et al. Phenotypic and functional features of human Th17 cells. J Exp Med 2007; 204: 1849 – 1861.en_US
dc.identifier.citedreferenceEvans HG, Suddason T, Jackson I, Taams LS, Lord GM. Optimal induction of T helper 17 cells in humans requires T cell receptor ligation in the context of Toll-like receptor-activated monocytes. Proc Natl Acad Sci USA 2007; 104: 17034 – 17039.en_US
dc.identifier.citedreferenceAcosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8: 942 – 949.en_US
dc.identifier.citedreferenceWilson NJ, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007; 8: 950 – 957.en_US
dc.identifier.citedreferenceChen Z, Tato CM, Muul L, Laurence A, O'Shea JJ. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum 2007; 56: 2936 – 2946.en_US
dc.identifier.citedreferenceYen D, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006; 116: 1310 – 1316.en_US
dc.identifier.citedreferenceManel N, Unutmaz D, Littman DR. The differentiation of human Th-17 cells requires transforming growth factor-beta and induction of the nuclear receptor ROR-gamma-t. Nature Immunology 2008; e-publication, May 4 2008.en_US
dc.identifier.citedreferenceVolpe E, Servant N, Zollinger R, Bogiatzi SI, Hupe P, Barillot E, Soumelis V. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human Th-17 responses. Nature Immunology 2008; e-publication, May 4 2008.en_US
dc.identifier.citedreferenceAmadi-Obi A, et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med 2007; 13: 711 – 718.en_US
dc.identifier.citedreferenceHoeve MA, et al. Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. Eur J Immunol 2006; 36: 661 – 670.en_US
dc.identifier.citedreferenceIvanov II, et al. The orphan nuclear receptor ROR[gamma]t directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126: 1121 – 1133.en_US
dc.identifier.citedreferenceYang XO, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 2007; 282: 9358 – 9363.en_US
dc.identifier.citedreferenceChen Z, et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci USA 2006; 103: 8137 – 8142.en_US
dc.identifier.citedreferenceMathur AN, et al. STAT3 and STAT4 direct development of IL-17-secreting Th cells. J Immunol 2007; 178: 4901 – 4907.en_US
dc.identifier.citedreferenceNishihara M, et al. IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state. Int Immunol 2007; 19: 695 – 702.en_US
dc.identifier.citedreferenceWei L, Laurence A, Elias KM, O'Shea JJ. IL-21 Is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 2007; 282: 34605 – 34610.en_US
dc.identifier.citedreferenceFantini MC, et al. IL-21 regulates experimental colitis by modulating the balance between Th1 and Th17 cells. Eur J Immunol 2007; 37: 3155 – 3163.en_US
dc.identifier.citedreferenceZhou L, et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007; 8: 967 – 974.en_US
dc.identifier.citedreferenceKorn T, et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 2007; 448: 484 – 487.en_US
dc.identifier.citedreferenceNurieva R, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007; 448: 480 – 483.en_US
dc.identifier.citedreferencePeluso I, et al. IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol 2007; 178: 732 – 739.en_US
dc.identifier.citedreferenceOnoda T, et al. Human CD4+ central and effector memory T cells produce IL-21: effect on cytokine-driven proliferation of CD4+ T cell subsets. Int Immunol 2007; 19: 1191 – 1199.en_US
dc.identifier.citedreferenceKuestner RE, et al. Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol 2007; 179: 5462 – 5473.en_US
dc.identifier.citedreferenceWright JF, et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J Biol Chem 2007; 282: 13447 – 13455.en_US
dc.identifier.citedreferenceLiang SC, et al. An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 2007; 179: 7791 – 7799.en_US
dc.identifier.citedreferenceZheng Y, et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007; 445: 648 – 651.en_US
dc.identifier.citedreferenceAcosta-Rodriguez EV, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 2007; 8: 639 – 646.en_US
dc.identifier.citedreferenceLiang SC, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203: 2271 – 2279.en_US
dc.identifier.citedreferenceChung Y, Yang X, Chang SH, Ma L, Tian Q, Dong C. Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res 2006; 16: 902 – 907.en_US
dc.identifier.citedreferenceBoniface K, Bernard F-X, Garcia M, Gurney AL, Lecron J-C, Morel F. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol 2005; 174: 3695 – 3702.en_US
dc.identifier.citedreferenceWolk K, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 2006; 36: 1309 – 1323.en_US
dc.identifier.citedreferenceAndoh A, et al. Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterol 2005; 129: 969 – 984.en_US
dc.identifier.citedreferenceZenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Karow M, Flavell RA. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 2007; 27: 647 – 659.en_US
dc.identifier.citedreferenceAnderson CF, Oukka M, Kuchroo VJ, Sacks D. CD4+CD25-Foxp3-Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med 2007; 204: 285 – 297.en_US
dc.identifier.citedreferenceJankovic D, et al. Conventional T-bet+Foxp3-Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J Exp Med 2007; 204: 273 – 283.en_US
dc.identifier.citedreferenceMcGeachy MJ, et al. TGF-[beta] and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat Immunol 2007; 8: 1390 – 1397.en_US
dc.identifier.citedreferenceStumhofer JS, et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 2007; 8: 1363 – 1371.en_US
dc.identifier.citedreferenceHirota K, et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med 2007; 204: 2803 – 2812.en_US
dc.identifier.citedreferenceLundy SK, Lira SA, Smit JJ, Cook DN, Berlin AA, Lukacs NW. Attenuation of allergen-induced responses in CCR6-/- mice is dependent upon altered pulmonary T lymphocyte activation. J Immunol 2005; 174: 2054 – 2060.en_US
dc.identifier.citedreferenceTeraki Y, Miyake A, Takebayashi R, Shiohara T. Homing receptor and chemokine receptor on intraepidermal T cells in psoriasis vulgaris. Clin Exp Dermatol 2004; 29: 658 – 663.en_US
dc.identifier.citedreferenceVarona R, Cadenas V, Flores J, MartÍnez AC, MÁrquez G. CCR6 has a non-redundant role in the development of inflammatory bowel disease. Eur J Immunol 2003; 33: 2937 – 2946.en_US
dc.identifier.citedreferenceRuth J, et al. Role of macrophage inflammatory protein-3alpha and its ligand CCR6 in rheumatoid arthritis. Lab Invest 2003; 83: 579 – 588.en_US
dc.identifier.citedreferenceKao C-Y, et al. Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/NF-{kappa}B-dependent signaling pathway. J Immunol 2005; 175: 6676 – 6685.en_US
dc.identifier.citedreferenceChabaud M, Page G, Miossec P. Enhancing effect of IL-1, IL-17, and TNF-{alpha} on macrophage inflammatory protein-3{alpha} production in rheumatoid arthritis: regulation by soluble receptors and Th2 cytokines. J Immunol 2001; 167: 6015 – 6020.en_US
dc.identifier.citedreferenceSato W, Aranami T, Yamamura T. Cutting edge: human Th17 cells are identified as bearing CCR2+CCR5- phenotype. J Immunol 2007; 178: 7525 – 7529.en_US
dc.identifier.citedreferenceArican OAM, Sasmaz S, Ciragil P. Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm 2005; 2005: 273 – 279.en_US
dc.identifier.citedreferenceChan JR, et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 2006; 203: 2577 – 2587.en_US
dc.identifier.citedreferenceVilladsen LS, et al. Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model. J Clin Invest 2003; 112: 1571 – 1580.en_US
dc.identifier.citedreferenceLee E, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med 2004; 199: 125 – 130.en_US
dc.identifier.citedreferencePiskin G, Sylva-Steenland RMR, Bos JD, Teunissen MBM. In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin. J Immunol 2006; 176: 1908 – 1915.en_US
dc.identifier.citedreferenceAlbanesi C, Scarponi C, Cavani A, Federici M, Nasorri F, Girolomoni G. Interleukin-17 is produced by both Th1 and Th2 lymphocytes, and modulates interferon-[gamma]- and interleukin-4-induced activation of human keratinocytes. J Invest Dermatol 2000; 115: 81 – 87.en_US
dc.identifier.citedreferenceHomey B, et al. Up-regulation of macrophage inflammatory protein-3{alpha}/CCL20 and CC chemokine receptor 6 in psoriasis. J Immunol 2000; 164: 6621 – 6632.en_US
dc.identifier.citedreferenceKrueger GG, et al. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med 2007; 356: 580 – 592.en_US
dc.identifier.citedreferenceToichi E, et al. An anti-IL-12p40 antibody down-regulates type 1 cytokines, chemokines, and IL-12/IL-23 in psoriasis. J Immunol 2006; 177: 4917 – 4926.en_US
dc.identifier.citedreferenceZaba LC, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med 2007; 204: 3183 – 3194.en_US
dc.identifier.citedreferenceMauritz N, Holmdahl R, Jonsson R, Van der Meide P, Scheynius A, Klareskog L. Treatment with gamma-interferon triggers the onset of collagen arthritis in mice. Arthritis Rheum 1988; 31: 1297 – 1304.en_US
dc.identifier.citedreferenceCooper SM, Sriram S, Ranges GE. Suppression of murine collagen-induced arthritis with monoclonal anti-Ia antibodies and augmentation with IFN-gamma. J Immunol 1988; 141: 1958 – 1962.en_US
dc.identifier.citedreferenceManoury-Schwartz B, et al. High susceptibility to collagen-induced arthritis in mice lacking IFN-gamma receptors. J Immunol 1997; 158: 5501 – 5506.en_US
dc.identifier.citedreferenceVermeire K, Heremans H, Vandeputte M, Huang S, Billiau A, Matthys P. Accelerated collagen-induced arthritis in IFN-gamma receptor-deficient mice. J Immunol 1997; 158: 5507 – 5513.en_US
dc.identifier.citedreferenceChu C-Q, Swart D, Alcorn D, Tocker J, Elkon KB. Interferon-gamma regulates susceptibility to collagen-induced arthritis through suppression of interleukin-17. Arthritis Rheum 2007; 56: 1145 – 1151.en_US
dc.identifier.citedreferenceChu CQ, Song Z, Mayton L, Wu B, Wooley PH. IFN{gamma} deficient C57BL/6 (H-2b) mice develop collagen induced arthritis with predominant usage of T cell receptor V{beta}6 and V{beta}8 in arthritic joints. Ann Rheum Dis 2003; 62: 983 – 990.en_US
dc.identifier.citedreferenceGuedez Y, et al. Genetic ablation of interferon-gamma up-regulates interleukin-1beta expression and enables the elicitation of collagen-induced arthritis in a nonsusceptible mouse strain. Arthritis Rheum 2001; 44: 2413 – 2424.en_US
dc.identifier.citedreferenceMurphy CA, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 2003; 198: 1951 – 1957.en_US
dc.identifier.citedreferenceIrmler IM, Gajda M, Brauer R. Exacerbation of antigen-induced arthritis in IFN-{gamma}-deficient mice as a result of unrestricted IL-17 response. J Immunol 2007; 179: 6228 – 6236.en_US
dc.identifier.citedreferenceBoissier MC, et al. Biphasic effect of interferon-gamma in murine collagen-induced arthritis. Eur J Immunol 1995; 25: 1184 – 1190.en_US
dc.identifier.citedreferenceFinnegan A, Mikecz K, Tao P, Glant TT. Proteoglycan (aggrecan)-induced arthritis in BALB/c mice is a Th1-type disease regulated by Th2 cytokines. J Immunol 1999; 163: 5383 – 5390.en_US
dc.identifier.citedreferenceNakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003; 171: 6173 – 6177.en_US
dc.identifier.citedreferenceLubberts E, et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 2004; 50: 650 – 659.en_US
dc.identifier.citedreferenceBush KA, Farmer KM, Walker JS, Kirkham BW. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheum 2002; 46: 802 – 805.en_US
dc.identifier.citedreferenceKoenders MI, et al. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis Rheum 2005; 52: 3239 – 3247.en_US
dc.identifier.citedreferenceLubberts E, et al. Requirement of IL-17 receptor signaling in radiation-resistant cells in the joint for full progression of destructive synovitis. J Immunol 2005; 175: 3360 – 3368.en_US
dc.identifier.citedreferenceNakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci USA 2003; 100: 5986 – 5990.en_US
dc.identifier.citedreferenceHirota K, et al. T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+Th cells that cause autoimmune arthritis. J Exp Med 2007; 204: 41 – 47.en_US
dc.identifier.citedreferenceHwang SYKH. Expression of IL-17 homologs and their receptors in the synovial cells of rheumatoid arthritis patients. Mol Cells 2005; 19: 180 – 184.en_US
dc.identifier.citedreferenceChabaud M, et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 1999; 42: 963 – 970.en_US
dc.identifier.citedreferenceZiolkowska M, et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol 2000; 164: 2832 – 2838.en_US
dc.identifier.citedreferenceKirkham BW, et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: a two-year prospective study (the DAMAGE study cohort). Arthritis Rheum 2006; 54: 1122 – 1131.en_US
dc.identifier.citedreferenceLundy S, Sarkar S, Tesmer L, Fox D. Cells of the synovium in rheumatoid arthritis. T lymphocytes. Arthritis Res Ther 2007; 9: 202.en_US
dc.identifier.citedreferenceKim K-W, et al. Up-regulation of stromal cell-derived factor 1 (CXCL12) production in rheumatoid synovial fibroblasts through interactions with T lymphocytes: role of interleukin-17 and CD40L-CD40 interaction. Arthritis Rheum 2007; 56: 1076 – 1086.en_US
dc.identifier.citedreferenceRyu SLJ, Kim SI. IL-17 increased the production of vascular endothelial growth factor in rheumatoid arthritis synoviocytes. Clin Rheumatol 2006; 25: 16 – 20.en_US
dc.identifier.citedreferenceKotake S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999; 103: 1345 – 1352.en_US
dc.identifier.citedreferenceMiranda-CarÚs M-E, et al. Peripheral blood T lymphocytes from patients with early rheumatoid arthritis express RANKL and interleukin-15 on the cell surface and promote osteoclastogenesis in autologous monocytes. Arthritis Rheum 2006; 54: 1151 – 1164.en_US
dc.identifier.citedreferenceSato K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 2006; 203: 2673 – 2682.en_US
dc.identifier.citedreferenceCho M-L, et al. STAT3 and NF-{kappa}B signal pathway Is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol 2006; 176: 5652 – 5661.en_US
dc.identifier.citedreferenceLubberts E, et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J Immunol 2001; 167: 1004 – 1013.en_US
dc.identifier.citedreferenceKoenders MI, et al. Interleukin-17 acts independently of TNF-{alpha} under arthritic conditions. J Immunol 2006; 176: 6262 – 6269.en_US
dc.identifier.citedreferenceKoenders MI, et al. Induction of cartilage damage by overexpression of T cell interleukin-17A in experimental arthritis in mice deficient in interleukin-1. Arthritis Rheum 2005; 52: 975 – 983.en_US
dc.identifier.citedreferenceLubberts E, Koenders M, van den Berg W. The role of T cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther 2005; 7: 29 – 37.en_US
dc.identifier.citedreferenceJÜngel A, et al. Expression of interleukin-21 receptor, but not interleukin-21, in synovial fibroblasts and synovial macrophages of patients with rheumatoid arthritis. Arthritis Rheum 2004; 50: 1468 – 1476.en_US
dc.identifier.citedreferenceLi J, Shen W, Kong K, Liu Z. Interleukin-21 induces T-cell activation and proinflammatory cytokine secretion in rheumatoid arthritis. Scand J Immunol 2006; 64: 515 – 522.en_US
dc.identifier.citedreferenceYoung DA, et al. Blockade of the interleukin-21/interleukin-21 receptor pathway ameliorates disease in animal models of rheumatoid arthritis. Arthritis Rheum 2007; 56: 1152 – 1163.en_US
dc.identifier.citedreferenceKim HR, Kim HS, Park MK, Cho ML, Lee SH, Kim HY. The clinical role of IL-23p19 in patients with rheumatoid arthritis. Scand J Rheumatol 2007; 36: 259 – 264.en_US
dc.identifier.citedreferenceKim HR, et al. Up-regulation of IL-23p19 expression in rheumatoid arthritis synovial fibroblasts by IL-17 through PI3-kinase-, NF-{kappa}B- and p38 MAPK-dependent signalling pathways. Rheumatology 2007; 46: 57 – 64.en_US
dc.identifier.citedreferenceLee HS, Remmers EF, Le JM, Kastner DL, Bae SC, Gregersen PK. Association of STAT4 with rheumatoid arthritis in the Korean population. Mol Med 2007; 13: 455 – 460.en_US
dc.identifier.citedreferenceRemmers EF, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 2007; 357: 977 – 986.en_US
dc.identifier.citedreferenceHildner KM, et al. Targeting of the transcription factor STAT4 by antisense phosphorothioate oligonucleotides suppresses collagen-induced arthritis. J Immunol 2007; 178: 3427 – 3436.en_US
dc.identifier.citedreferenceIkeuchi H, et al. Expression of interleukin-22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. Arthritis Rheum 2005; 52: 1037 – 1046.en_US
dc.identifier.citedreferenceMiranda-Carus M-E, Balsa A, Benito-Miguel M, Perez de Ayala C, Martin-Mola E. IL-15 and the initiation of cell contact-dependent synovial fibroblast-T lymphocyte cross-talk in rheumatoid arthritis: effect of methotrexate. J Immunol 2004; 173: 1463 – 1476.en_US
dc.identifier.citedreferenceYoshihara K, Yamada H, Hori A, Yajima T, Kubo C, Yoshikai Y. IL-15 exacerbates collagen-induced arthritis with an enhanced CD4+T cell response to produce IL-17. Eur J Immunol 2007; 37: 2744 – 2752.en_US
dc.identifier.citedreferenceFerrari-Lacraz S, et al. Targeting IL-15 receptor-bearing cells with an antagonist mutant IL-15/Fc protein prevents disease development and progression in murine collagen-induced arthritis. J Immunol 2004; 173: 5818 – 5826.en_US
dc.identifier.citedreferenceYamamura Y, et al. Effector function of resting T cells: activation of synovial fibroblasts. J Immunol 2001; 166: 2270 – 2275.en_US
dc.identifier.citedreferenceTsai C, et al. Responsiveness of human T lymphocytes to bacterial superantigens presented by cultured rheumatoid arthritis synoviocytes. Arthritis Rheum 1996; 39: 125 – 136.en_US
dc.identifier.citedreferenceBrennan FM, Hayes AL, Ciesielski CJ, Green P, Foxwell BMJ, Feldmann M. Evidence that rheumatoid arthritis synovial T cells are similar to cytokine-activated T cells: involvement of phosphatidylinositol 3-kinase and nuclear factor kappa-B pathways in tumor necrosis factor alpha production in rheumatoid arthritis. Arthritis Rheum 2002; 46: 31 – 41.en_US
dc.identifier.citedreferenceTran CN, et al. Molecular interactions between T Cells and fibroblast-like synoviocytes: role of membrane tumor necrosis factor-{alpha} on cytokine-activated T cells. Am J Pathol 2007; 171: 1588 – 1598.en_US
dc.identifier.citedreferenceStanley KT, VanDort C, Motyl C, Endres J, Fox DA. Immunocompetent properties of human osteoblasts: interactions with T lymphocytes. J Bone Miner Res 2006; 21: 29 – 36.en_US
dc.identifier.citedreferenceMorita Y, et al. Dendritic cells genetically engineered to express IL-4 inhibit murine collagen-induced arthritis. J Clin Invest 2001; 107: 1275 – 1284.en_US
dc.identifier.citedreferenceSarkar S, Tesmer LA, Hindnavis V, Endres JL, Fox DA. Interleukin-17 as a molecular target in immune-mediated arthritis: immunoregulatory properties of genetically modified murine dendritic cells that secrete interleukin-4. Arthritis Rheum 2007; 56: 89 – 100.en_US
dc.identifier.citedreferenceLubberts E, et al. IL-4 gene therapy for collagen arthritis suppresses synovial IL-17 and osteoprotegerin ligand and prevents bone erosion. J Clin Invest 2000; 105: 1697 – 1710.en_US
dc.identifier.citedreferenceKurasawa K, et al. Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheum 2000; 43: 2455 – 2463.en_US
dc.identifier.citedreferenceDistler JHW, et al. Expression of interleukin-21 receptor in epidermis from patients with systemic sclerosis. Arthritis Rheum 2005; 52: 856 – 864.en_US
dc.identifier.citedreferenceBaechler EC, Gregersen PK, Behrens TW. The emerging role of interferon in human systemic lupus erythematosus. Curr Opin Immunol 2004; 16: 801 – 807.en_US
dc.identifier.citedreferenceMeyers JA, et al. Blockade of TLR9 agonist-induced type I interferons promotes inflammatory cytokine IFN-[gamma] and IL-17 secretion by activated human PBMC. Cytokine 2006; 35: 235 – 246.en_US
dc.identifier.citedreferenceWong CK, Ho CY, Li EK, Lam CWK. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus 2000; 9: 589 – 593.en_US
dc.identifier.citedreferenceKang H-K, Liu M, Datta SK. Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells. J Immunol 2007; 178: 7849 – 7858.en_US
dc.identifier.citedreferenceSingh R, Aggarwal A, Misra R. Th1/Th17 cytokine profiles in patients with reactive arthritis/undifferentiated spondyloarthropathy. J Rheumatol 2007; 34: 2285 – 2290.en_US
dc.identifier.citedreferenceMerrill JE. Proinflammatory and antiinflammatory cytokines in multiple sclerosis and central nervous system acquired immunodeficiency syndrome. J Immunother 1992; 12: 167 – 170.en_US
dc.identifier.citedreferenceWoodroofe MN, Cuzner ML. Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by non-radioactive in situ hybridization. Cytokine 1993; 5: 583 – 588.en_US
dc.identifier.citedreferencePorrini AM, Reder AT. IFN-gamma, IFN-beta, and PGE1 affect monokine secretion: relevance to monocyte activation in multiple sclerosis. Cell Immunol 1994; 157: 428 – 438.en_US
dc.identifier.citedreferenceRovaris M, et al. Patterns of disease activity in multiple sclerosis patients: a study with quantitative gadolinium-enhanced brain MRI and cytokine measurement in different clinical subgroups. J Neurol 1996; 243: 536 – 542.en_US
dc.identifier.citedreferenceMatusevicius D, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 1999; 5: 101 – 104.en_US
dc.identifier.citedreferenceZhang GX, et al. Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol 2003; 170: 2153 – 2160.en_US
dc.identifier.citedreferenceVaknin-Dembinsky A, Balashov K, Weiner HL. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol 2006; 176: 7768 – 7774.en_US
dc.identifier.citedreferenceCorreale J, Farez M. Monocyte-derived dendritic cells in multiple sclerosis: the effect of bacterial infection. J Neuroimmunol 2007; 190: 177 – 189.en_US
dc.identifier.citedreferenceBailey SL, Schreiner B, McMahon EJ, Miller SD. CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+T(H)-17 cells in relapsing EAE. Nat Immunol 2007; 8: 172 – 180.en_US
dc.identifier.citedreferenceChen Y, et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 2006; 116: 1317 – 1326.en_US
dc.identifier.citedreferenceStumhofer JS, et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 2006; 7: 937 – 945.en_US
dc.identifier.citedreferenceBatten M, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 2006; 7: 929 – 936.en_US
dc.identifier.citedreferenceIshizu T, et al. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 2005; 128: 988 – 1002.en_US
dc.identifier.citedreferenceKebir H, et al. Human T(H)17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 2007; 13: 1173 – 1175.en_US
dc.identifier.citedreferenceFainardi E, et al. Cerebrospinal fluid and serum levels and intrathecal production of active matrix metalloproteinase-9 (MMP-9) as markers of disease activity in patients with multiple sclerosis. Mult Scler 2006; 12: 294 – 301.en_US
dc.identifier.citedreferenceYong VW, Zabad RK, Agrawal S, Goncalves Dasilva A, Metz LM. Elevation of matrix metalloproteinases (MMPs) in multiple sclerosis and impact of immunomodulators. J Neurol Sci 2007; 259: 79 – 84.en_US
dc.identifier.citedreferenceFurukawa Y, Kobuke K, Matsumori A. Role of cytokines in autoimmune myocarditis and cardiomyopathy. Autoimmunity 2001; 34: 165 – 168.en_US
dc.identifier.citedreferenceRangachari M, et al. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J Exp Med 2006; 203: 2009 – 2019.en_US
dc.identifier.citedreferenceSonderegger I, et al. Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis. Eur J Immunol 2006; 36: 2849 – 2856.en_US
dc.identifier.citedreferenceCortez DM, et al. Interleukin-17 stimulates MMP1 expression in primary human cardiac fibroblasts Via p38 MAPK and ERK1/2-dependent C/EBP{beta}, NF-{kappa}B, and AP-1 activation. Am J Physiol Heart Circ Physiol 2007; 293: H3356 – H3365.en_US
dc.identifier.citedreferenceUlukus M, Arici A. Immunology of endometriosis. Minerva Ginecol 2005; 57: 237 – 248.en_US
dc.identifier.citedreferenceInagaki J, Kondo A, Lopez LR, Shoenfeld Y, Matsuura E. Pregnancy loss and endometriosis: pathogenic role of anti-laminin-1 autoantibodies. Ann NY Acad Sci 2005; 1051: 174 – 184.en_US
dc.identifier.citedreferenceZhang X, Xu H, Lin J, Qian Y, Deng L. Peritoneal fluid concentrations of interleukin-17 correlate with the severity of endometriosis and infertility of this disorder. BJOG 2005; 112: 1153 – 1155.en_US
dc.identifier.citedreferenceDamico FM, Kiss S, Young LH. Vogt–Koyanagi–Harada disease. Semin Ophthalmol 2005; 20: 183 – 190.en_US
dc.identifier.citedreferenceChi W, et al. IL-23 promotes CD4+T cells to produce IL-17 in Vogt–Koyanagi–Harada disease. J Allergy Clin Immunol 2007; 119: 1218 – 1224.en_US
dc.identifier.citedreferencePeng Y, Han G, Shao H, Wang Y, Kaplan HJ, Sun D. Characterization of IL-17+interphotoreceptor retinoid-binding protein-specific T cells in experimental autoimmune uveitis. Invest Ophthalmol Vis Sci 2007; 48: 4153 – 4161.en_US
dc.identifier.citedreferenceBendtzen K, Buschard K, Diamant M, Horn T, Svenson M. Possible role of IL-1, TNF-alpha, and IL-6 in insulin-dependent diabetes mellitus and autoimmune thyroid disease. Thyroid Cell Group. Lymphokine Res 1989; 8: 335 – 340.en_US
dc.identifier.citedreferenceDogan Y, Akarsu S, Ustundag B, Yilmaz E, Gurgoze MK. Serum IL-1beta, IL-2, and IL-6 in insulin-dependent diabetic children. Mediators Inflamm 2006; 2006: 59206.en_US
dc.identifier.citedreferenceWilson CA, et al. IL-1 beta modulation of spontaneous autoimmune diabetes and thyroiditis in the BB rat. J Immunol 1990; 144: 3784 – 3788.en_US
dc.identifier.citedreferenceMensah-Brown EP, Shahin A, Al-Shamisi M, Wei X, Lukic ML. IL-23 leads to diabetes induction after subdiabetogenic treatment with multiple low doses of streptozotocin. Eur J Immunol 2006; 36: 216 – 223.en_US
dc.identifier.citedreferenceChen K, Wei Y, Sharp GC, Braley-Mullen H. Decreasing TNF-alpha results in less fibrosis and earlier resolution of granulomatous experimental autoimmune thyroiditis. J Leukoc Biol 2007; 81: 306 – 314.en_US
dc.identifier.citedreferenceCooke A. Th17 cells in inflammatory conditions. Rev Diabet Stud 2006; 3: 72 – 75.en_US
dc.identifier.citedreferenceMolet S, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 2001; 108: 430 – 438.en_US
dc.identifier.citedreferenceBarczyk A, Pierzchala W, Sozanska E. Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir Med 2003; 97: 726 – 733.en_US
dc.identifier.citedreferenceBullens DM, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res 2006; 7: 135.en_US
dc.identifier.citedreferenceWong CK, et al. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-gamma, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin Exp Immunol 2001; 125: 177 – 183.en_US
dc.identifier.citedreferenceHashimoto T, Akiyama K, Kobayashi N, Mori A. Comparison of IL-17 production by helper T cells among atopic and nonatopic asthmatics and control subjects. Int Arch Allergy Immunol 2005; 137 ( Suppl. ): 51 – 54.en_US
dc.identifier.citedreferenceLinden A. Role of interleukin-17 and the neutrophil in asthma. Int Arch Allergy Immunol 2001; 126: 179 – 184.en_US
dc.identifier.citedreferenceDragon S, Rahman MS, Yang J, Unruh H, Halayko AJ, Gounni AS. IL-17 enhances IL-1beta-mediated CXCL-8 release from human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2007; 292: L1023 – L1029.en_US
dc.identifier.citedreferenceHenness S, Johnson CK, Ge Q, Armour CL, Hughes JM, Ammit AJ. IL-17A augments TNF-alpha-induced IL-6 expression in airway smooth muscle by enhancing mRNA stability. J Allergy Clin Immunol 2004; 114: 958 – 964.en_US
dc.identifier.citedreferenceRahman MS, Yamasaki A, Yang J, Shan L, Halayko AJ, Gounni AS. IL-17A induces eotaxin-1/CC chemokine ligand 11 expression in human airway smooth muscle cells: role of MAPK (Erk1/2, JNK, and p38) pathways. J Immunol 2006; 177: 4064 – 4071.en_US
dc.identifier.citedreferencevan den Berg A, et al. Interleukin-17 induces hyperresponsive interleukin-8 and interleukin-6 production to tumor necrosis factor-alpha in structural lung cells. Am J Respir Cell Mol Biol 2005; 33: 97 – 104.en_US
dc.identifier.citedreferenceChen Y, Thai P, Zhao YH, Ho YS, DeSouza MM, Wu R. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem 2003; 278: 17036 – 17043.en_US
dc.identifier.citedreferenceLinden A. Rationale for targeting interleukin-17 in the lungs. Curr Opin Investig Drugs 2003; 4: 1304 – 1312.en_US
dc.identifier.citedreferenceChakir J, et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol 2003; 111: 1293 – 1298.en_US
dc.identifier.citedreferencevan Beelen AJ, Teunissen MB, Kapsenberg ML, de Jong EC. Interleukin-17 in inflammatory skin disorders. Curr Opin Allergy Clin Immunol 2007; 7: 374 – 381.en_US
dc.identifier.citedreferenceNakae S, et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 2002; 17: 375 – 387.en_US
dc.identifier.citedreferenceMiraglia del Giudice M, et al. Immune dysregulation in atopic dermatitis. Allergy Asthma Proc 2006; 27: 451 – 455.en_US
dc.identifier.citedreferenceToda M, et al. Polarized in vivo expression of IL-11 and IL-17 between acute and chronic skin lesions. J Allergy Clin Immunol 2003; 111: 875 – 881.en_US
dc.identifier.citedreferenceHe D, Wu L, Kim HK, Li H, Elmets CA, Xu H. CD8+IL-17-producing T cells are important in effector functions for the elicitation of contact hypersensitivity responses. J Immunol 2006; 177: 6852 – 6858.en_US
dc.identifier.citedreferenceBeeton C, et al. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA 2006; 103: 17414 – 17419.en_US
dc.identifier.citedreferenceAzam P, Sankaranarayanan A, Homerick D, Griffey S, Wulff H. Targeting effector memory T cells with the small molecule Kv1.3 blocker PAP-1 suppresses allergic contact dermatitis. J Invest Dermatol 2007; 127: 1419 – 1429.en_US
dc.identifier.citedreferenceAlbanesi C, Cavani A, Girolomoni G. IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-gamma and TNF-alpha. J Immunol 1999; 162: 494 – 502.en_US
dc.identifier.citedreferenceZhang Z, Hinrichs DJ, Lu H, Chen H, Zhong W, Kolls JK. After interleukin-12p40, are interleukin-23 and interleukin-17 the next therapeutic targets for inflammatory bowel disease? Int Immunopharmacol 2007; 7: 409 – 416.en_US
dc.identifier.citedreferenceHue S, et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med 2006; 203: 2473 – 2483.en_US
dc.identifier.citedreferenceKullberg MC, et al. IL-23 plays a key role in Helicobacter hepaticus -induced T cell-dependent colitis. J Exp Med 2006; 203: 2485 – 2494.en_US
dc.identifier.citedreferenceMannon PJ, et al. Anti-interleukin-12 antibody for active Crohn's disease. N Engl J Med 2004; 351: 2069 – 2079.en_US
dc.identifier.citedreferenceDuerr RH, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314: 1461 – 1463.en_US
dc.identifier.citedreferenceBurakoff R, et al. A phase 1/2A trial of STA 5326, an oral interleukin-12/23 inhibitor, in patients with active moderate to severe Crohn's disease. Inflamm Bowel Dis 2006; 12: 558 – 565.en_US
dc.identifier.citedreferenceBillich A. Drug evaluation: apilimod, an oral IL-12/IL-23 inhibitor for the treatment of autoimmune diseases and common variable immunodeficiency. IDrugs 2007; 10: 53 – 59.en_US
dc.identifier.citedreferenceGross V, Andus T, Leser HG, Roth M, Scholmerich J. Inflammatory mediators in chronic inflammatory bowel diseases. Klin Wochenschr 1991; 69: 981 – 987.en_US
dc.identifier.citedreferenceStevens C, et al. Tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 expression in inflammatory bowel disease. Dig Dis Sci 1992; 37: 818 – 826.en_US
dc.identifier.citedreferenceReinecker HC, et al. Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn's disease. Clin Exp Immunol 1993; 94: 174 – 181.en_US
dc.identifier.citedreferenceNielsen OH, Kirman I, Rudiger N, Hendel J, Vainer B. Upregulation of interleukin-12 and -17 in active inflammatory bowel disease. Scand J Gastroenterol 2003; 38: 180 – 185.en_US
dc.identifier.citedreferenceSaruta M, Yu QT, Avanesyan A, Fleshner PR, Targan SR, Papadakis KA. Phenotype and effector function of CC chemokine receptor 9-expressing lymphocytes in small intestinal Crohn's disease. J Immunol 2007; 178: 3293 – 3300.en_US
dc.identifier.citedreferenceWitowski J, et al. Role of mesothelial cell-derived granulocyte colony-stimulating factor in interleukin-17-induced neutrophil accumulation in the peritoneum. Kidney Int 2007; 71: 514 – 525.en_US
dc.identifier.citedreferenceYagi Y, Andoh A, Inatomi O, Tsujikawa T, Fujiyama Y. Inflammatory responses induced by interleukin-17 family members in human colonic subepithelial myofibroblasts. J Gastroenterol 2007; 42: 746 – 753.en_US
dc.identifier.citedreferenceWolk K, et al. IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn's disease. J Immunol 2007; 178: 5973 – 5981.en_US
dc.identifier.citedreferenceSchwartz S, Beaulieu JF, Ruemmele FM. Interleukin-17 is a potent immuno-modulator and regulator of normal human intestinal epithelial cell growth. Biochem Biophys Res Commun 2005; 337: 505 – 509.en_US
dc.identifier.citedreferenceCaviglia R, Ribolsi M, Rizzi M, Emerenziani S, Annunziata ML, Cicala M. Maintenance of remission with infliximab in inflammatory bowel disease: efficacy and safety long-term follow-up. World J Gastroenterol 2007; 13: 5238 – 5244.en_US
dc.identifier.citedreferenceWada Y, et al. Selective abrogation of Th1 response by STA-5326, a potent IL-12/IL-23 inhibitor. Blood 2007; 109: 1156 – 1164.en_US
dc.identifier.citedreferencePineda AA. Developments in the apheresis procedure for the treatment of inflammatory bowel disease. Inflamm Bowel Dis 2006; 12 ( Suppl. ): S10 – S14.en_US
dc.identifier.citedreferenceYamamoto T, Nakahigashi M, Umegae S, Kitagawa T, Matsumoto K. Impact of elemental diet on mucosal inflammation in patients with active Crohn's disease: cytokine production and endoscopic and histological findings. Inflamm Bowel Dis 2005; 11: 580 – 588.en_US
dc.identifier.citedreferenceTaubman MA, Kawai T. Involvement of T-lymphocytes in periodontal disease and in direct and indirect induction of bone resorption. Crit Rev Oral Biol Med 2001; 12: 125 – 135.en_US
dc.identifier.citedreferenceBartold PM, Marshall RI, Haynes DR. Periodontitis and rheumatoid arthritis: a review. J Periodontol 2005; 76: 2066 – 2074.en_US
dc.identifier.citedreferenceOda T, Yoshie H, Yamazaki K. Porphyromonas gingivalis antigen preferentially stimulates T cells to express IL-17 but not receptor activator of NF-kappaB ligand in vitro. Oral Microbiol Immunol 2003; 18: 30 – 36.en_US
dc.identifier.citedreferenceJohnson RB, Wood N, Serio FG. Interleukin-11 and IL-17 and the pathogenesis of periodontal disease. J Periodontol 2004; 75: 37 – 43.en_US
dc.identifier.citedreferenceTakahashi K, Azuma T, Motohira H, Kinane DF, Kitetsu S. The potential role of interleukin-17 in the immunopathology of periodontal disease. J Clin Periodontol 2005; 32: 369 – 374.en_US
dc.identifier.citedreferenceVernal R, Dutzan N, Chaparro A, Puente J, Antonieta Valenzuela M, Gamonal J. Levels of interleukin-17 in gingival crevicular fluid and in supernatants of cellular cultures of gingival tissue from patients with chronic periodontitis. J Clin Periodontol 2005; 32: 383 – 389.en_US
dc.identifier.citedreferenceLester SR, Bain JL, Johnson RB, Serio FG. Gingival concentrations of interleukin-23 and -17 at healthy sites and at sites of clinical attachment loss. J Periodontol 2007; 78: 1545 – 1550.en_US
dc.identifier.citedreferenceBeklen A, Ainola M, Hukkanen M, Gurgan C, Sorsa T, Konttinen YT. MMPs, IL-1, and TNF are regulated by IL-17 in periodontitis. J Dent Res 2007; 86: 347 – 351.en_US
dc.identifier.citedreferenceIto H, et al. Gene expression analysis of the CD4+T-cell clones derived from gingival tissues of periodontitis patients. Oral Microbiol Immunol 2005; 20: 382 – 386.en_US
dc.identifier.citedreferenceColic M, Vasilijic S, Gazivoda D, Vucevic D, Marjanovic M, Lukic A. Interleukin-17 plays a role in exacerbation of inflammation within chronic periapical lesions. Eur J Oral Sci 2007; 115: 315 – 320.en_US
dc.identifier.citedreferenceYu JJ, et al. An essential role for IL-17 in preventing pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone requires IL-17 receptor-dependent signals. Blood 2007; 109: 3794 – 3802.en_US
dc.identifier.citedreferenceFilipe-Santos O, et al. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol 2006; 18: 347 – 361.en_US
dc.identifier.citedreferenceKastelein R, Hunter C, Cua D. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007; 25: 221 – 242.en_US
dc.identifier.citedreferenceMinegishi Y, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 2006; 25: 745 – 755.en_US
dc.identifier.citedreferenceShibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y. Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol 2007; 178: 4466 – 4472.en_US
dc.identifier.citedreferenceWitowski J, et al. IL-17 stimulates intraperitoneal neutrophil infiltration through the release of GRO alpha chemokine from mesothelial cells. J Immunol 2000; 165: 5814 – 5821.en_US
dc.identifier.citedreferenceLey K, Smith E, Stark M. IL-17A-producing neutrophil-regulatory Tn lymphocytes. Immunol Res 2006; 34: 229 – 242.en_US
dc.identifier.citedreferenceMiyamoto M, et al. Neutrophilia in LFA-1-deficient mice confers resistance to listeriosis: possible contribution of granulocyte-colony-stimulating factor and IL-17. J Immunol 2003; 170: 5228 – 5234.en_US
dc.identifier.citedreferenceHappel K, et al. Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J Immunol 2003; 170: 4432 – 4436.en_US
dc.identifier.citedreferenceMiyamoto M, Prause O, Sjostrand M, Laan M, Lotvall J, Linden A. Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol 2003; 170: 4665 – 4672.en_US
dc.identifier.citedreferenceFerretti S, Bonneau O, Dubois G, Jones C, Trifilieff A. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J Immunol 2003; 170: 2106 – 2112.en_US
dc.identifier.citedreferenceShellito J, quan Zheng M, Ye P, Ruan S, Shean M, Kolls J. Effect of alcohol consumption on host release of interleukin-17 during pulmonary infection with Klebsiella pneumoniae. Alcohol Clin Exp Res 2001; 25: 872 – 881.en_US
dc.identifier.citedreferenceWu Q, Martin R, Rino J, Breed R, Torres R, Chu H. IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes Infect 2007; 9: 78 – 86.en_US
dc.identifier.citedreferenceHiggins S, Jarnicki A, Lavelle E, Mills K. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J Immunol 2006; 177: 7980 – 7989.en_US
dc.identifier.citedreferenceChen X, Howard O, Oppenheim J. Pertussis toxin by inducing IL-6 promotes the generation of IL-17-producing CD4 cells. J Immunol 2007; 178: 6123 – 6129.en_US
dc.identifier.citedreferenceMalley R, et al. Antibody-independent, interleukin-17A-mediated, cross-serotype immunity to pneumococci in mice immunized intranasally with the cell wall polysaccharide. Infect Immun 2006; 74: 2187 – 2195.en_US
dc.identifier.citedreferenceChung D, Chitnis T, Panzo R, Kasper D, Sayegh M, Tzianabos A. CD4+ T cells regulate surgical and postinfectious adhesion formation. J Exp Med 2002; 195: 1471 – 1478.en_US
dc.identifier.citedreferenceChung D, et al. CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J Immunol 2003; 170: 1958 – 1963.en_US
dc.identifier.citedreferenceRice L, et al. CpG oligodeoxynucleotide protection in polymicrobial sepsis is dependent on interleukin-17. J Infect Dis 2005; 191: 1368 – 1376.en_US
dc.identifier.citedreferenceHofstetter H, Luhder F, Toyka K, Gold R. IL-17 production by thymocytes upon CD3 stimulation and costimulation with microbial factors. Cytokine 2006; 34: 184 – 197.en_US
dc.identifier.citedreferenceKim H, et al. Lipoteichoic acid from Lactobacillus plantarum elicits both the production of interleukin-23p19 and suppression of pathogen-mediated interleukin-10 in THP-1 cells. FEMS Immunol Med Microbiol 2007; 49: 205 – 214.en_US
dc.identifier.citedreferenceKielian T, Haney A, Mayes P, Garg S, Esen N. Toll-like receptor 2 modulates the proinflammatory milieu in Staphylococcus aureus -induced brain abscess. Infect Immun 2005; 73: 7428 – 7435.en_US
dc.identifier.citedreferencevan Beelen A, et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 2007; 27: 660 – 669.en_US
dc.identifier.citedreferenceBelladonna M, et al. IL-23 neutralization protects mice from Gram-negative endotoxic shock. Cytokine 2006; 34: 161 – 169.en_US
dc.identifier.citedreferenceIvanov S, et al. Functional relevance of the IL-23-IL-17 axis in lungs in vivo. Am J Respir Cell Mol Biol 2007; 36: 442 – 451.en_US
dc.identifier.citedreferenceDubin P, Kolls J. IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa lung infection in mice. Am J Physiol Lung Cell Mol Physiol 2007; 292: L519 – L528.en_US
dc.identifier.citedreferenceLuzza F, et al. Up-regulation of IL-17 is associated with bioactive IL-8 expression in Helicobacter pylori -infected human gastric mucosa. J Immunol 2000; 165: 5332 – 5337.en_US
dc.identifier.citedreferenceInfante-Duarte C, Horton H, Byrne M, Kamradt T. Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 2000; 165: 6107 – 6115.en_US
dc.identifier.citedreferenceBurchill M, et al. Inhibition of interleukin-17 prevents the development of arthritis in vaccinated mice challenged with Borrelia burgdorferi. Infect Immun 2003; 71: 3437 – 3442.en_US
dc.identifier.citedreferenceNardelli D, Burchill M, England D, Torrealba J, Callister S, Schell R. Association of CD4+CD25+ T cells with prevention of severe destructive arthritis in Borrelia burgdorferi -vaccinated and challenged gamma interferon-deficient mice treated with anti-interleukin-17 antibody. Clin Diagn Lab Immunol 2004; 11: 1075 – 1084.en_US
dc.identifier.citedreferenceMichel M, et al. Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med 2007; 204: 995 – 1001.en_US
dc.identifier.citedreferenceButchar J, et al. Francisella tularensis induces IL-23 production in human monocytes. J Immunol 2007; 178: 4445 – 4454.en_US
dc.identifier.citedreferenceHappel K, et al. Pulmonary interleukin-23 gene delivery increases local T-cell immunity and controls growth of Mycobacterium tuberculosis in the lungs. Infect Immun 2005; 73: 5782 – 5788.en_US
dc.identifier.citedreferenceKhader S, et al. IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available. J Immunol 2005; 175: 788 – 795.en_US
dc.identifier.citedreferenceFeng C, et al. NK cell-derived IFN-gamma differentially regulates innate resistance and neutrophil response in T cell-deficient hosts infected with Mycobacterium tuberculosis. J Immunol 2006; 177: 7086 – 7093.en_US
dc.identifier.citedreferenceKeller C, Hoffmann R, Lang R, Brandau S, Hermann C, Ehlers S. Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes. Infect Immun 2006; 74: 4295 – 4309.en_US
dc.identifier.citedreferenceLockhart E, Green A, Flynn J. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 2006; 177: 4662 – 4669.en_US
dc.identifier.citedreferenceChackerian AA, et al. Neutralization or absence of the interleukin-23 pathway does not compromise immunity to mycobacterial infection. Infect Immun 2006; 74: 6092 – 6099.en_US
dc.identifier.citedreferenceCruz A, et al. Cutting edge: IFN-gamma regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection. J Immunol 2006; 177: 1416 – 1420.en_US
dc.identifier.citedreferenceUmemura M, et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette–Guerin infection. J Immunol 2007; 178: 3786 – 3796.en_US
dc.identifier.citedreferenceWozniak T, Ryan A, Britton W. Interleukin-23 restores immunity to Mycobacterium tuberculosis infection in IL-12p40-deficient mice and is not required for the development of IL-17-secreting T cell responses. J Immunol 2006; 177: 8684 – 8692.en_US
dc.identifier.citedreferenceKhader S, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 2007; 8: 369 – 377.en_US
dc.identifier.citedreferencePathak S, et al. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol 2007; 8: 610 – 618.en_US
dc.identifier.citedreferenceKleinschek M, et al. IL-23 enhances the inflammatory cell response in Cryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12. J Immunol 2006; 176: 1098 – 1106.en_US
dc.identifier.citedreferenceRudner X, Happel K, Young E, Shellito J. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect Immun 2007; 75: 3055 – 3061.en_US
dc.identifier.citedreferenceHuang W, Na L, Fidel P, Schwarzenberger P. Requirement of interleukin-17A for systemic anti- Candida albicans host defense in mice. J Infect Dis 2004; 190: 624 – 631.en_US
dc.identifier.citedreferenceZelante T, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 2007; 37: 2695 – 2706.en_US
dc.identifier.citedreferenceCooper A. IL-23 and IL-17 have a multi-faceted largely negative role in fungal infection. Eur J Immunol 2007; 37: 2680 – 2682.en_US
dc.identifier.citedreferenceLeibundGut-Landmann S, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 2007; 8: 630 – 638.en_US
dc.identifier.citedreferencePalm N, Medzhitov R. Antifungal defense turns 17. Nat Immunol 2007; 8: 549 – 551.en_US
dc.identifier.citedreferenceGaddi P, Yap G. Cytokine regulation of immunopathology in toxoplasmosis. Immunol Cell Biol 2007; 85: 155 – 159.en_US
dc.identifier.citedreferenceRutitzky L, Lopes da Rosa J, Stadecker M. Severe CD4 T cell-mediated immunopathology in murine schistosomiasis is dependent on IL-12p40 and correlates with high levels of IL-17. J Immunol 2005; 175: 3920 – 3926.en_US
dc.identifier.citedreferenceFickenscher H, Fleckenstein B. Herpesvirus saimiri. Philos Trans R Soc Lond B Biol Sci 2001; 356: 545 – 567.en_US
dc.identifier.citedreferenceKnappe A, et al. The interleukin-17 gene of Herpesvirus saimiri. J Virol 1998; 72: 5797 – 5801.en_US
dc.identifier.citedreferenceMaertzdorf J, Osterhaus A, Verjans G. IL-17 expression in human herpetic stromal keratitis: modulatory effects on chemokine production by corneal fibroblasts. J Immunol 2002; 169: 5897 – 5903.en_US
dc.identifier.citedreferenceHashimoto K, et al. Respiratory syncytial virus in allergic lung inflammation increases Muc5ac and gob-5. Am J Respir Crit Care Med 2004; 170: 306 – 312.en_US
dc.identifier.citedreferenceHashimoto K, et al. Respiratory syncytial virus infection in the absence of STAT 1 results in airway dysfunction, airway mucus, and augmented IL-17 levels. J Allergy Clin Immunol 2005; 116: 550 – 557.en_US
dc.identifier.citedreferenceSmiley K, McNeal M, Basu M, Choi A, Clements J, Ward R. Association of gamma interferon and interleukin-17 production in intestinal CD4+ T cells with protection against rotavirus shedding in mice intranasally immunized with VP6 and the adjuvant LT(R192G). J Virol 2007; 81: 3740 – 3748.en_US
dc.identifier.citedreferenceDodon M, Li Z, Hamaia S, Gazzolo L. Tax protein of human T-cell leukaemia virus type 1 induces interleukin 17 gene expression in T cells. J Gen Virol 2004; 85: 1921 – 1932.en_US
dc.identifier.citedreferenceMaek-A-Nantawat W, Nantawat W, Buranapraditkun S, Klaewsongkram J, Ruxrungtham K. Increased interleukin-17 production both in helper T cell subset Th17 and CD4-negative T cells in human immunodeficiency virus infection. Viral Immunol 2007; 20: 66 – 75.en_US
dc.identifier.citedreferenceWiehler S, Proud D. Interleukin-17A modulates human airway epithelial responses to human rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 2007; 293: L505 – L515.en_US
dc.identifier.citedreferencePatera A, Pesnicak L, Bertin J, Cohen J. Interleukin 17 modulates the immune response to vaccinia virus infection. Virology 2002; 299: 56 – 63.en_US
dc.identifier.citedreferenceFridman W, Tartour E. Macrophage- and lymphocyte-produced Th1 and Th2 cytokines in the tumour microenvironment. Res Immunol 1998; 149: 651 – 653.en_US
dc.identifier.citedreferenceKato T, et al. Expression of IL-17 mRNA in ovarian cancer. Biochem Biophys Res Commun 2001; 282: 735 – 738.en_US
dc.identifier.citedreferenceCiree A, et al. Expression and activity of IL-17 in cutaneous T-cell lymphomas (mycosis fungoides and Sezary syndrome). Int J Cancer 2004; 112: 113 – 120.en_US
dc.identifier.citedreferenceLi M, et al. Thymosinalpha1 stimulates cell proliferation by activating ERK1/2, JNK, and increasing cytokine secretion in human pancreatic cancer cells. Cancer Lett 2007; 248: 58 – 67.en_US
dc.identifier.citedreferenceHaudenschild D, Moseley T, Rose L, Reddi A. Soluble and transmembrane isoforms of novel interleukin-17 receptor-like protein by RNA splicing and expression in prostate cancer. J Biol Chem 2002; 277: 4309 – 4316.en_US
dc.identifier.citedreferenceUmemura M, et al. Involvement of IL-17 in Fas ligand-induced inflammation. Int Immunol 2004; 16: 1099 – 1108.en_US
dc.identifier.citedreferenceKehlen A, Thiele K, Riemann D, Rainov N, Langner J. Interleukin-17 stimulates the expression of IkappaB alpha mRNA and the secretion of IL-6 and IL-8 in glioblastoma cell lines. J Neuroimmunol 1999; 101: 1 – 6.en_US
dc.identifier.citedreferenceNumasaki M, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood 2003; 101: 2620 – 2627.en_US
dc.identifier.citedreferenceNumasaki M, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol 2005; 175: 6177 – 6189.en_US
dc.identifier.citedreferenceHirahara N, et al. Inoculation of human interleukin-17 gene-transfected Meth-A fibrosarcoma cells induces T cell-dependent tumor-specific immunity in mice. Oncology 2001; 61: 79 – 89.en_US
dc.identifier.citedreferenceBenchetrit F, et al. Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism. Blood 2002; 99: 2114 – 2121.en_US
dc.identifier.citedreferenceKryczek I, et al. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol 2007; 178: 6730 – 6733.en_US
dc.identifier.citedreferenceMeeran S, Katiyar S, Elmets C, Katiyar S. Interleukin-12 deficiency is permissive for angiogenesis in UV radiation-induced skin tumors. Cancer Res 2007; 67: 3785 – 3793.en_US
dc.identifier.citedreferenceLangowski J, et al. IL-23 promotes tumour incidence and growth. Nature 2006; 442: 461 – 465.en_US
dc.identifier.citedreferenceKaiga T, Sato M, Kaneda H, Iwakura Y, Takayama T, Tahara H. Systemic administration of IL-23 induces potent antitumor immunity primarily mediated through Th1-type response in association with the endogenously expressed IL-12. J Immunol 2007; 178: 7571 – 7580.en_US
dc.identifier.citedreferenceVan Kooten C, et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am Soc Nephrol 1998; 9: 1526 – 1534.en_US
dc.identifier.citedreferenceHsieh H, Loong C, Lui W, Chen A, Lin C. IL-17 expression as a possible predictive parameter for subclinical renal allograft rejection. Transpl Int 2001; 14: 287 – 298.en_US
dc.identifier.citedreferenceLoong C, Hsieh H, Lui W, Chen A, Lin C. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol 2002; 197: 322 – 332.en_US
dc.identifier.citedreferenceYoshida S, et al. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants. Am J Transplant 2006; 6: 724 – 735.en_US
dc.identifier.citedreferenceBurlingham W, et al. IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest 2007; 117: 3498 – 3506.en_US
dc.identifier.citedreferenceAntonysamy M, et al. Evidence for a role of IL-17 in organ allograft rejection: IL-17 promotes the functional differentiation of dendritic cell progenitors. J Immunol 1999; 162: 577 – 584.en_US
dc.identifier.citedreferenceLi J, et al. Gene transfer of soluble interleukin-17 receptor prolongs cardiac allograft survival in a rat model. Eur J Cardiothorac Surg 2006; 29: 779 – 783.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.