Regulatory Mechanisms of Corticotropin-Releasing Hormone and Vasopressin Gene Expression in the Hypothalamus
dc.contributor.author | Itoi, K. | en_US |
dc.contributor.author | Jiang, Y. -Q. | en_US |
dc.contributor.author | Iwasaki, Y. | en_US |
dc.contributor.author | Watson, Stanley J. | en_US |
dc.date.accessioned | 2010-06-01T19:20:00Z | |
dc.date.available | 2010-06-01T19:20:00Z | |
dc.date.issued | 2004-04 | en_US |
dc.identifier.citation | Itoi, K.; Jiang, Y.-Q.; Iwasaki, Y.; . Watson, S. J (2004). "Regulatory Mechanisms of Corticotropin-Releasing Hormone and Vasopressin Gene Expression in the Hypothalamus." Journal of Neuroendocrinology 16(4): 348-355. <http://hdl.handle.net/2027.42/72477> | en_US |
dc.identifier.issn | 0953-8194 | en_US |
dc.identifier.issn | 1365-2826 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/72477 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15089973&dopt=citation | en_US |
dc.description.abstract | Tuberoinfundibular corticotropin-releasing hormone (CRH) neurones are the principal regulators of the hypothalamic-pituitary-adrenal (HPA)-axis. Vasopressin is primarily a neurohypophysial hormone, produced in magnocellular neurones of the hypothalamic paraventricular and supraoptic nuclei, but parvocellular CRH neurones also coexpress vasopressin, which acts as a second ‘releasing factor’ for adrenocorticotropic hormone along with CRH. All stress inputs converge on these hypothalamic neuroendocrine neurones, and the input signals are integrated to determine the output secretion of CRH and vasopressin. Aminergic, cholinergic, GABAergic, glutamatergic and a number of peptidergic inputs have all been implicated in the regulation of CRH/vasopressin neurones. Glucocorticoids inhibit the HPA-axis activity by negative feedback. Interleukin-1 stimulates CRH and vasopressin gene expression, and is implicated in immune-neuroendocrine regulation. cAMP-response element-binding protein phosphorylation may mediate transcriptional activation of both CRH and vasopressin genes, but the roles of AP-1 and other transcription factors remain controversial. Expression profiles of the CRH and vasopressin genes are not uniform after stress exposure, and the vasopressin gene appears to be more sensitive to glucocorticoid suppression. | en_US |
dc.format.extent | 186604 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Science Ltd | en_US |
dc.rights | © 2004 Blackwell Publishing Ltd | en_US |
dc.subject.other | Glucocorticoids | en_US |
dc.subject.other | Neurotransmitters | en_US |
dc.subject.other | Transcription | en_US |
dc.subject.other | Noradrenaline | en_US |
dc.subject.other | Stress | en_US |
dc.title | Regulatory Mechanisms of Corticotropin-Releasing Hormone and Vasopressin Gene Expression in the Hypothalamus | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Neurosciences | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | § Mental Health Research Institute, University of Michigan, Ann Arbor, MI, USA. | en_US |
dc.contributor.affiliationother | Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan. | en_US |
dc.contributor.affiliationother | † Division of Molecular Endocrinology, Graduate School of Medicine, Tohoku University, Sendai, Japan. | en_US |
dc.contributor.affiliationother | † Department of Clinical Pathophysiology, Nagoya University Graduate School of Medicine, Nagoya, Japan. | en_US |
dc.identifier.pmid | 15089973 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/72477/1/j.0953-8194.2004.01172.x.pdf | |
dc.identifier.doi | 10.1111/j.0953-8194.2004.01172.x | en_US |
dc.identifier.source | Journal of Neuroendocrinology | en_US |
dc.identifier.citedreference | Selye H. In Vivo. The Case for Supramolecular Biology. New York: Livesight Publications Co., 1967. | en_US |
dc.identifier.citedreference | Itoi K, Seasholtz AF, Watson SJ. Cellular and extracellular regulatory mechanisms of hypothalamic corticotrophin-releasing hormone neurons. Endocr J 1998; 45: 13 – 33. | en_US |
dc.identifier.citedreference | Reul JMHM, Holsboer F. Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2002; 2: 23 – 33. | en_US |
dc.identifier.citedreference | Kostich WA, Chen A, Sperle K, Largent BL. Molecular identification and analysis of a novel human corticotropin-releasing factor (CRH) receptor: the CRF2γ receptor. Mol Endocrinol 1998; 12: 1077 – 1085. | en_US |
dc.identifier.citedreference | Hsu SY, Hsueh AJW. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nature Med 2001; 7: 605 – 611. | en_US |
dc.identifier.citedreference | Mouri T, Itoi K, Takahashi K, Suda T, Murakami O, Yoshinaga K, Andoh N, Ohtani H, Masuda T, Sasano N. Colocalization of corticotropin-releasing factor and vasopressin in the paraventricular nucleus of the human hypothalamus. Neuroendocrinology 1993; 57: 34 – 39. | en_US |
dc.identifier.citedreference | Spengler D, Van Rupprecht R, Holsboer F. Identification and characterization of a 3′,5′-cyclic adenosine monophosphate-responsive element in the human corticotropin-releasing hormone gene promoter. Mol Endocrinol 1992; 6: 1931 – 1941. | en_US |
dc.identifier.citedreference | Itoi K, Horiba N, Tozawa F, Sakai Y, Sakai K, Abe K, Demura H, Suda T. Major role of 3′,5′-cyclic adenosine monophosphate-dependent protein kinase A pathway in corticotropin-releasing factor gene expression in the rat hypothalamus in vivo. Endocrinology 1996; 137: 2389 – 2396. | en_US |
dc.identifier.citedreference | Kovacs KJ, Sawchenko PE. Sequence of stress-induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons. J Neurosci 1996; 16: 262 – 273. | en_US |
dc.identifier.citedreference | Rosen LB, Majzoub JA, Adler GK. Effects of glucocorticoid on corticotropin-releasing hormone gene regulation by second messenger pathways in NPLC and AtT-20 cells. Endocrinology 1992; 130: 2237 – 2244. | en_US |
dc.identifier.citedreference | Itoi K, Mouri T, Takahashi K, Murakami O, Imai Y, Sasaki S, Yoshinaga K, Sasano N. Suppression by glucocorticoid of the immunoreactivity of corticotropin-releasing factor and vasopressin in the paraventricular nucleus of rat hypothalamus. Neurosci Lett 1987; 73: 231 – 236. | en_US |
dc.identifier.citedreference | Swanson LW, Simmons DM. Differential steroid hormone and neural influence on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histochemical study in the rat. J Comp Neurol 1989; 285: 413 – 435. | en_US |
dc.identifier.citedreference | Guardiola-Diaz HM, Kolinske JS, Gates LH, Seasholtz AF. Negative glucocorticoid regulation of cyclic adenosine 3′,5′-monophosphate-stimulated corticotropin-releasing hormone-reporter expression in AtT-20 cells. Mol Endocrinol 1996; 10: 317 – 329. | en_US |
dc.identifier.citedreference | Malkoski SP, Handanos CM, Dorin RI. Localization of a negative glucocorticoid response element of the human corticotropin releasing hormone gene. Mol Cell Endocrinol 1997; 127: 189 – 199. | en_US |
dc.identifier.citedreference | Keegan CE, Karolyi IJ, Knapp LT, Bourbonais FJ, Camper SA, Seasholtz AF. Expression of corticotropin-releasing hormone transgenes in neurons of adult and developing mice. Mol Cell Neurosci 1994; 5: 505 – 514. | en_US |
dc.identifier.citedreference | Keegan CE, Karolyi IJ, Burrows HL, Camper SA, Seasholtz AF. Homologous recombination in fertilized mouse eggs and assessment of heterologous locus control region function. Transgenics 1994; 1: 439 – 449. | en_US |
dc.identifier.citedreference | Seth KA, Majzoub JA. Repressor element silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) can act as an enhancer as well as a repressor of corticotropin-releasing hormone gene transcription. J Biol Chem 2001; 276: 13917 – 13923. | en_US |
dc.identifier.citedreference | Sausville E, Carney D, Battey J. The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem 1985; 260: 10236 – 10241. | en_US |
dc.identifier.citedreference | de Bree FM, van der Kleij AAM, Nijenhuis M, Zalm R, Murphy D, Burbach JPH. The hormone domain of the vasopressin prohormone is required for the correct prohormone trafficking through the secretory pathway. J Neuroendocrinol 2003; 15: 1156 – 1163. | en_US |
dc.identifier.citedreference | Guillon G, Derick S, Pena A, Cheng LL, Stoev S, Seyer R, Morgat JL, Barberis C, Serradeil-Le Gal C, Wagnon J, Manning M. The discovery of novel vasopressin V 1b receptor ligands for pharmacological, functional and structural investigations. J Neuroendocrinol 2004; 16: 356 – 361. | en_US |
dc.identifier.citedreference | Kakiya S, Arima H, Yokoi H, Murase T, Yambe Y, Oiso Y. Effects of acute hypotensive stimuli on arginine vasopressin gene transcription in the rat hypothalamus. Am J Physiol 2000; 279: E886 – E892. | en_US |
dc.identifier.citedreference | Iwasaki Y, Oiso Y, Saito H, Majzoub JA. Positive and negative regulation of the rat vasopressin gene promoter. Endocrinology 1997; 138: 5266 – 5274. | en_US |
dc.identifier.citedreference | Emanuel RL, Iwasaki Y, Arbiser ZK, Velez EM, Emerson CH, Majzoub JA. Vasopressin messenger ribonucleic acid regulation via the protein kinase A pathway. Endocrinology 1998; 139: 2831 – 2837. | en_US |
dc.identifier.citedreference | Berghorn KA, Knapp LT, Hoffman GE, Sherman TG. Induction of glucocorticoid receptor expression in hypothalamic magnocellular vasopressin neurons during chronic hypoosmolality. Endocrinology 1995; 136: 804 – 807. | en_US |
dc.identifier.citedreference | Davies J, Waller S, Zeng Q, Wells S, Murphy D. Further delineation of the sequences required for the expression and physiological regulation of the vasopressin gene in transgenic rat hypothalamic magnocellular neurones. J Neuroendocrinol 2003; 15: 42 – 50. | en_US |
dc.identifier.citedreference | Burbach JPH, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2001; 81: 1197 – 1267. | en_US |
dc.identifier.citedreference | Quinn JP, Bubb VJ, Marshall-Jones ZV, Coulson JM. Neuron restrictive silencer factor as a modulator of neuropeptide gene expression. Regul Pept 2002; 108: 135 – 141. | en_US |
dc.identifier.citedreference | Van Loon GR, Scapagnini U, Cohen R, Ganong WF. Effect of intraventricular administration of adrenergic drugs on the adrenal venous 17-hydroxycorticosteroid response to surgical stress in the dog. Neuroendocrinology 1971; 8: 257 – 272. | en_US |
dc.identifier.citedreference | Itoi K, Suda T, Tozawa F, Dobashi I, Ohmori N, Sakai Y, Abe K, Demura H. Microinjection of norepinephrine into the paraventricular nucleus of the hypothalamus stimulates corticotropin-releasing factor gene expression in conscious rats. Endocrinology 1994; 135: 2177 – 2182. | en_US |
dc.identifier.citedreference | Itoi K, Helmreich DL, Lopez-Figueroa MO, Watson SJ. Differential regulation of corticotropin-releasing hormone and vasopressin gene transcription in the hypothalamus by norepinephrine. J Neurosci 1999; 19: 5464 – 5472. | en_US |
dc.identifier.citedreference | Cole RL, Sawchenko PE. Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. J Neurosci 2002; 22: 959 – 969. | en_US |
dc.identifier.citedreference | Day HEW, Campeau S, Watson SJ Jr, Akil H. Expression of α 1b adrenoceptor mRNA in corticotropin-releasing hormone-containing cells of the rat hypothalamus and its regulation by corticosterone. J Neurosci 1999; 19: 10098 – 10106. | en_US |
dc.identifier.citedreference | Jorgensen H, Kjaer A, Knigge U, Moller M, Warberg J. Serotonin stimulates hypothalamic mRNA expression and local release of neurohypophysial peptides. J Neuroendocrinol 2003; 15: 564 – 571. | en_US |
dc.identifier.citedreference | Blackburn-Munro G, Blackburn-Munro RE. Chronic pain, chronic stress and depression: coincidence or consequence? J Neuroendocrinol 2001; 13: 1009 – 1023. | en_US |
dc.identifier.citedreference | Ohmori N, Itoi K, Tozawa F, Sakai Y, Sakai K, Horiba N, Demura H, Suda T. Effect of acetylcholine on corticotropin-releasing factor gene expression in the hypothalamic paraventricular nucleus of conscious rats. Endocrinology 1995; 136: 4858 – 4863. | en_US |
dc.identifier.citedreference | Janowsky DS, Overstreet DH, Nurnberger JI Jr. Is cholinergic sensitivity a genetic marker for the affective disorders? Am J Med Gen 1994; 54: 335 – 344. | en_US |
dc.identifier.citedreference | Suda T, Tozawa F, Ushiyama T, Sumitomo T, Yamada M, Demura H. Interleukin-1 stimulates corticotropin-releasing factor gene expression in rat hypothalamus. Endocrinology 1990; 126: 1223 – 1228. | en_US |
dc.identifier.citedreference | Turnbull AV, Rivier CL. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev 1999; 79: 1 – 71. | en_US |
dc.identifier.citedreference | Rivest S. How circulating cytokines trigger the neural circuits that control the hypothalamic-pituitary-adrenal axis. Psychoneuroendocrinology 2001; 26: 761 – 788. | en_US |
dc.identifier.citedreference | Ericsson A, Arias C, Sawchenko PE. Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1. J Neurosci 1997; 17: 7166 – 7179. | en_US |
dc.identifier.citedreference | Schiltz JC, Sawchenko PE. Distinct brain vascular cell types manifest inducible cyclooxygenase expression as a function of the strength and nature of immune insults. J Neurosci 2002; 22: 5606 – 5618. | en_US |
dc.identifier.citedreference | Grinevich V, Ma X-M, Herman JP, Jezova D, Akmayev I, Aguilera G. Effect of repeated lipopolysaccharide administration on tissue cytokine expression and hypothalamic-pituitary-adrenal axis activity in rats. J Neuroendocrinol 2001; 13: 711 – 723. | en_US |
dc.identifier.citedreference | Stotz-Potter EH, Morin SM, DiMicco JA. Effect of microinjection of muscimol into the dorsomedial or paraventricular hypothalamic nucleus on air stress-induced neuroendocrine and cardiovascular changes in rats. Brain Res 1996; 742: 219 – 224. | en_US |
dc.identifier.citedreference | Herman JP, Prewitt CM-F, Cullinan WE. Neural circuit regulation of the hypothalamo-pituitary-adrenocortical stress axis. Crit Rev Neurobiol 1996; 10: 371 – 394. | en_US |
dc.identifier.citedreference | Ziegler DR, Herman JP. Local integration of glutamate signaling in the hypothalamic paraventricular region: regulation of glucocorticoid stress responses. Endocrinology 2000; 141: 4801 – 4804. | en_US |
dc.identifier.citedreference | Bartanusz V, Jezova D, Bertini LT, Tilders FJH, Aubry J-M, Kiss JZ. Stress-induced increase in vasopressin and corticotropin-releasing factor expression in hypophysiotrophic paraventricular neurons. Endocrinology 1993; 132: 895 – 902. | en_US |
dc.identifier.citedreference | Ceccatelli S, Eriksson M, Hokfelt T. Distribution and coexistence of corticotropin-releasing factor-, neurotensin-, enkephalin-, cholecystokinin-, galanin- and vasoactive intestinal polypeptide/peptide histidine isoleucine-like peptides in the parvocellular part of the paraventricular nucleus. Neuroendocrinology 1989; 49: 309 – 323. | en_US |
dc.identifier.citedreference | Helmreich DL, Itoi K, Lopez-Figueroa MO, Akil H, Watson SJ. Norepinephrine-induced CRH and AVP gene transcription within the hypothalamus: differential regulation by corticosterone. Mol Brain Res 2001; 88: 62 – 73. | en_US |
dc.identifier.citedreference | Kovacs KJ, Foldes A, Sawchenko PE. Glucocorticoid negative feedback selectively targets vasopressin transcription in parvocellular neurosecretory neurons. J Neurosci 2000; 20: 3843 – 3852. | en_US |
dc.identifier.citedreference | Ma X-M, Aguilera G. Transcriptional responses of the vasopressin and corticotropin-releasing hormone gene to acute and repeated intraperitoneal hypertonic saline injection in rats. Mol Brain Res 1999; 68: 129 – 140. | en_US |
dc.identifier.citedreference | Jiang Y-Q, Kawashima H, Iwasaki Y, Uchida K, Sugimoto K, Itoi K. Differential effects of forced swim-stress on the corticotropin-releasing hormone and vasopressin gene transcription in the parvocellular division of the paraventricular nucleus of rat hypothalamus. Neurosci Lett 2004; 358: 201 – 204. | en_US |
dc.identifier.citedreference | Ma X-M, Lightman SL. The arginine vasopressin and corticotrophin-releasing hormone gene transcription responses to varied frequencies of repeated stress in rats. J Physiol 1998; 510: 605 – 614. | en_US |
dc.identifier.citedreference | Ma X-M, Lightman SL, Aguilera G. Vasopressin and corticotropin-releasing hormone gene responses to novel stress in rats adapted to repeated restraint. Endocrinology 1999; 140: 3623 – 3632. | en_US |
dc.identifier.citedreference | Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981; 213: 1394 – 1397. | en_US |
dc.identifier.citedreference | Land H, Schutz G, Schmale H, Richter D. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature 1982; 295: 299 – 303. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.