Show simple item record

CREB αδ– deficient mice show inhibition and low activity in novel environments without changes in stress reactivity

dc.contributor.authorHebda-Bauer, Elaine K.en_US
dc.contributor.authorWatson, Stanley J.en_US
dc.contributor.authorAkil, Hudaen_US
dc.date.accessioned2010-06-01T19:21:28Z
dc.date.available2010-06-01T19:21:28Z
dc.date.issued2004-07en_US
dc.identifier.citationHebda-Bauer, Elaine K.; Watson, Stanley J.; Akil, Huda (2004). "CREB αδ– deficient mice show inhibition and low activity in novel environments without changes in stress reactivity." European Journal of Neuroscience 20(2): 503-513. <http://hdl.handle.net/2027.42/72501>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72501
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15233759&dopt=citationen_US
dc.description.abstractThe ability to respond to unexpected or novel stimuli is critical for survival. Determining that a stimulus is indeed novel requires memory to ascertain its lack of familiarity. As the long-term synaptic changes involved in memory formation require the cAMP response element binding protein (CREB), we examined the extent to which CREB is involved in responses to novel environments. These environments typically trigger an endocrine stress response. Thus, we measured behavioural and stress hormone responses to three novel and one familiar environment in mice with a targeted disruption of the alpha and delta isoforms of the CREB gene (CREB αδ– deficient mice). We found CREB αδ– deficient mice to be less active and more inhibited in the elevated plus maze, open field, and light/dark box, without showing differences in anxiety-like behaviour. This inhibition is unique to novel environments because these mice display a normal phenotype in the home cage, a familiar environment. Although CREB αδ– deficient mice exhibit altered behaviour in novel environments, they show normal reactivity to mild and moderate stress as both basal and stress levels of corticosterone are similar to those of wild-type controls. This is the first report of CREB αδ– deficient mice to: (i) show altered behaviour, not related to learning and memory-associated behaviours, upon initial exposure to environments and (ii) serve as an animal model that can dissociate locomotor activity from anxiety-like behaviour in novel environments.en_US
dc.format.extent552569 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2004 Federation of European Neuroscience Societiesen_US
dc.subject.otherAnxiety Testsen_US
dc.subject.otherCorticosteroneen_US
dc.subject.otherHippocampusen_US
dc.subject.otherLocomotionen_US
dc.subject.otherNoveltyen_US
dc.titleCREB αδ– deficient mice show inhibition and low activity in novel environments without changes in stress reactivityen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid15233759en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72501/1/j.1460-9568.2004.03487.x.pdf
dc.identifier.doi10.1111/j.1460-9568.2004.03487.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceAkil, H. & Morano, M. I. ( 1996 ) The Biology of Stress: From Periphery to Brain. In Watson, S. J., (Ed) Biology of Schizophrenia and Affective Disease. Raven Press, New York, pp. 1 – 38.en_US
dc.identifier.citedreferenceAnisman, H., Hayley, S., Kelly, O., Borowski, T. & Merali, Z. ( 2001 ) Psychogenic, neurogenic, and systemic stressor effects on plasma corticosterone and behavior: mouse strain-dependent outcomes. Behav. Neurosci., 115, 443 – 454.en_US
dc.identifier.citedreferenceBertoglio, L. J. & Carobrez, A. P. ( 2002 ) Behavioral profile of rats submitted to session 1-session 2 in the elevated plus maze during diurnal/nocturnal phases and under different illumination conditions. Behav. Brain Res., 132, 135 – 143.en_US
dc.identifier.citedreferenceBeuzen, A. & Belzung, C. ( 1995 ) Link between emotional memory and anxiety states: a study by principal component analysis. Physiol. Behav., 58, 111 – 118.en_US
dc.identifier.citedreferenceBlendy, J. A., Kaestner, K. H., Schmid, W., Gass, P. & Schutz, G. ( 1996 ) Targeting of the CREB gene leads to up-regulation of a novel CREB mRNA isoform. EMBO J., 15, 1098 – 1106.en_US
dc.identifier.citedreferenceBourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G. & Silva, A. J. ( 1994 ) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 79, 59 – 68.en_US
dc.identifier.citedreferenceCarola, V., D'Olimpio, F., Brunamonti, E., Mangia, F. & Renzi, P. ( 2002 ) Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res., 134, 49 – 57.en_US
dc.identifier.citedreferenceChaouloff, F., Durand, M. & Mormede, P. ( 1997 ) Anxiety- and activity-related effects of diazepam and chlordiazepoxide in the rat light/dark and dark/light tests. Behav. Brain Res., 85, 27 – 35.en_US
dc.identifier.citedreferenceCho, Y. H., Gies, K. P., Tanila, H., Silva, A. J. & Eichenbaum, H. ( 1998 ) Abnormal hippocampal spatial representations in αCaMKIT T286A and CREB αδ– mice. Science, 279, 867 – 869.en_US
dc.identifier.citedreferenceClement, Y. & Chapouthier, G. ( 1998 ) Biological bases of anxiety. Neurosci. Biobehav. Rev., 22, 623 – 633.en_US
dc.identifier.citedreferenceCostall, B., Jones, B. J., Kelly, M. E., Naylor, R. J. & Tomkins, D. M. ( 1989 ) Exploration of mice in a black and white test box: validation as a model of anxiety. Pharmacol. Biochem. Behav., 32, 777 – 785.en_US
dc.identifier.citedreferenceCrawley, J. N. ( 2000 ) What's Wrong with My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice. Wiley-Liss, New York.en_US
dc.identifier.citedreferenceCrawley, J. & Goodwin, F. K. ( 1980 ) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol. Biochem. Behav., 13, 167 – 170.en_US
dc.identifier.citedreferenceCruz, A. P. M., Frei, F. & Graeff, F. G. ( 1994 ) Ethopharmacological analysis of rat behavior on the elevated plus maze. Pharmacol. Biochem. Behav., 49, 171 – 176.en_US
dc.identifier.citedreferenceDash, P. K., Hochner, B. & Kandel, E. R. ( 1990 ) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature, 345, 718 – 721.en_US
dc.identifier.citedreferenceDavis, M. ( 1998 ) Anatomic and physiologic substrates of emotion in an animal model. J. Clin. Neurophysiol., 15, 378 – 387.en_US
dc.identifier.citedreferenceDawson, G. R., Crawford, S. P., Collinson, N., Iversen, S. D. & Tricklebank, M. D. ( 1995a ) Evidence that the anxiolytic-like effects of chlordiazepoxide on the elevated plus maze are confounded by increases in locomotor activity. Psychopharmocology, 118, 316 – 323.en_US
dc.identifier.citedreferenceDawson, G. R. & Tricklebank, M. D. ( 1995b ) Use of an elevated plus maze in the search for novel anxiolytics agents. TIPS, 16, 33 – 36.en_US
dc.identifier.citedreferenceDroste, S. K., Gesing, A., Ulbricht, S., Muller, M. B., Linthorst, A. C. E. & Reul, J. M. H. M. ( 2003 ) Effects of long-term voluntary exercise on the mouse hypothalamic-pituitary-adrenal axis. Endocrinology, 144, 3012 – 3023.en_US
dc.identifier.citedreferenceDunn, A. J. & Swiergiel, A. H. ( 1999 ) Behavioral responses to stress are intact in CRF-deficient mice. Brain Res., 845, 14 – 20.en_US
dc.identifier.citedreferenceEspejo, E. F. ( 1997 ) Structure of the mouse behavior on the elevated plus-maze test of anxiety. Behav. Brain Res., 86, 105 – 112.en_US
dc.identifier.citedreferenceFalter, U., Gower, A. J. & Gobert, J. ( 1992 ) Resistance of baseline activity in the elevated plus-maze to exogenous influences. Behav. Pharmacol., 3, 123 – 128.en_US
dc.identifier.citedreferenceFernandes, C. & File, S. E. ( 1996 ) The influence of open arm ledges and maze experience in the elevated plus-maze. Pharmacol. Biochem. Behav., 54, 31 – 40.en_US
dc.identifier.citedreferenceGrailhe, R., Waeber, C., Dulawa, S. C., Hornung, J. P., Zhuang, X., Brunner, D., Geyer, M. A. & Hen, R. ( 1999 ) Increased exploratory activity and altered response to LSD in mice lacking the 5-HT(5A) receptor. Neuron, 22, 581 – 591.en_US
dc.identifier.citedreferenceGraves, L., Dalvi, A., Lucki, I., Blendy, J. A. & Abel, T. ( 2002 ) Behavioral analysis of CREB αδ mutation on a B6/129, F1 hybrid background. Hippocampus, 12, 18 – 26.en_US
dc.identifier.citedreferenceGraves, L., Hellman, K., Veasey, S., Blendy, J. A., Pac, A. I. & Abel, T. ( 2003 ) Genetic evidence for a role of CREB in sustained cortical arousal. J. Neurophysiol., 90, 1152 – 1159.en_US
dc.identifier.citedreferenceGriebel, G., Belzung, C., Perrault, G. & Sanger, D. J. ( 2000 ) Differences in anxiety-related behaviours and in sensitivity to diazepam in inbred and outbred strains of mice. Psychopharmacology (Berl), 148, 164 – 170.en_US
dc.identifier.citedreferenceGuzowski, J. F. & McGaugh, J. L. ( 1997 ) Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl Acad. Sci. USA, 94, 2693 – 2698.en_US
dc.identifier.citedreferenceHogg, S. ( 1996 ) A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol. Biochem. Behav., 54, 21 – 30.en_US
dc.identifier.citedreferenceHolmes, A. & Rodgers, R. J. ( 1998 ) Responses of Swiss-Webster mice to repeated plus-maze experience: further evidence for a qualitative shift in emotional state? Pharmacol. Biochem. Behav., 60, 473 – 488.en_US
dc.identifier.citedreferenceHooks, M. S., Jones, G. H., Smith, A. D., Neill, D. B. & Justice, J. B. Jr ( 1991 ) Response to novelty predicts the locomotor and nucleus accumbens dopamine response to cocaine. Synapse, 9, 121 – 128.en_US
dc.identifier.citedreferenceHooks, M. S., Juncos, J. L., Justice, J. B. Jr, Meiergerd, S. M., Povlock, S. L., Schenk, J. O. & Kalivas, P. W. ( 1994 ) Individual locomotor response to novelty predicts selective alterations in D1 and D2 receptors and mRNAs. J. Neurosci., 14, 6144 – 6152.en_US
dc.identifier.citedreferenceHooks, M. S. & Kalivas, P. W. ( 1994 ) Involvement of dopamine and excitatory amino acid transmission in novelty-induced motor activity. J. Pharmacol. Exp. Ther., 269, 976 – 988.en_US
dc.identifier.citedreferenceHummler, E., Cole, T. J., Blendy, J. A., Ganss, R., Aguzzi, A., Schmid, W., Beermann, F. & Schutz, G. ( 1994 ) Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc. Natl Acad. Sci. USA, 91, 5647 – 5651.en_US
dc.identifier.citedreferenceKarolyi, I. J., Burrows, H. L., Ramesh, T. M., Nakajima, M., Lesh, J. S., Seong, E., Camper, S. A. & Seasholtz, A. F. ( 1999 ) Altered anxiety and weight gain in corticotropin-releasing hormone-binding protein-deficient mice. Proc. Natl Acad. Sci. USA, 96, 11595 – 11600.en_US
dc.identifier.citedreferenceKogan, J. H., Frankland, P. W., Blendy, J. A., Coblentz, J., Marowitz, Z., Schutz, G. & Silva, A. J. ( 1997 ) Spaced training induces normal long-term memory in CREB mutant mice. Curr. Biol., 7, 1 – 11.en_US
dc.identifier.citedreferenceLemaire, V., Aurousseau, C., Le Moal, M. & Abrous, D. N. ( 1999 ) Behavioural trait of reactivity to novelty is related to hippocampal neurogenesis. Eur. J. Neurosci., 11, 4006 – 4014.en_US
dc.identifier.citedreferenceLister, R. G. ( 1987 ) The use of a plus-maze to measure anxiety in the mouse. Psychopharmocology, 92, 180 – 185.en_US
dc.identifier.citedreferenceMaldonado, R., Smadja, C., Mazzucchelli, C., Sassone-Corsi, P. & Mazucchelli, C. ( 1999 ) Altered emotional and locomotor responses in mice deficient in the transcription factor CREM. Proc. Natl Acad. Sci. USA, 96, 14094 – 14099.en_US
dc.identifier.citedreferenceMeerlo, P., Easton, A., Bergmann, B. M. & Turek, F. W. ( 2001 ) Restraint increases prolactin and REM sleep in C57BL/6J mice but not in BALB/cJ mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 281, R846 – R854.en_US
dc.identifier.citedreferenceMorimoto, M., Morita, N., Ozawa, H., Yokoyama, K. & Kawata, M. ( 1996 ) Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neurosci. Res., 26, 235 – 269.en_US
dc.identifier.citedreferenceO'Keefe, J. & Nadel, L. ( 1978 ) The Hippocampus as a Cognitive Map. Oxford University Press, Oxford.en_US
dc.identifier.citedreferenceOhl, F., Toschi, N., Wigger, A., Henniger, M. S. H. & Landgraf, R. ( 2001 ) Dimensions of emotionality in a rat model of innate anxiety. Behav. Neurosci., 115, 429 – 436.en_US
dc.identifier.citedreferencePellow, S., Chopin, P., File, S. E. & Briley, M. ( 1985 ) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Meth., 14, 149 – 167.en_US
dc.identifier.citedreferencePiazza, P. V., Deminiere, J. M., Le Moal, M. & Simon, H. ( 1989 ) Factors that predict individual vulnerability to amphetamine self-administration. Science, 245, 1511 – 1513.en_US
dc.identifier.citedreferenceRamos, A., Berton, O., Mormede, P. & Chaouloff, F. ( 1997 ) A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behav. Brain Res., 85, 57 – 69.en_US
dc.identifier.citedreferenceRamos, A. & Mormede, P. ( 1998 ) Stress and emotionality: a multidimensional and genetic approach. Neurosci. Biobehav. Rev., 22, 33 – 57.en_US
dc.identifier.citedreferenceRodgers, R. J. & Dalvi, A. ( 1997 ) Anxiety, defence, and the elevated plus maze. Neurosci. Biobehav. Rev., 21 ( 6 ), 801 – 810.en_US
dc.identifier.citedreferenceRodgers, R. J., Haller, J., Holmes, A., Halasz, J., Walton, T. J. & Brain, P. F. ( 1999 ) Corticosterone response to the plus-maze: high correlation with risk assessment in rats and mice. Physiol. Behav., 68, 47 – 53.en_US
dc.identifier.citedreferenceRodgers, R. J. & Johnson, N. J. ( 1995 ) Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety. Pharmacol. Biochem. Behav., 52, 297 – 303.en_US
dc.identifier.citedreferenceTrullas, R. & Skolnick, P. ( 1993 ) Differences in fear motivated behaviors among inbred mouse strains. Psychopharmacology (Berl), 111, 323 – 331.en_US
dc.identifier.citedreferenceVadasz, C., Kobor, G. & Lajtha, A. ( 1992 ) Motor activity and the mesotelencephalic dopamine function. I. High-resolution temporal and genetic analysis of open-field behavior. Behav. Brain Res., 48, 29 – 39.en_US
dc.identifier.citedreferenceWall, P. M. & Messier, C. ( 2000 ) Ethological confirmatory factor analysis of anxiety-like behavior in the murine elevated plus-maze. Behav. Brain Res., 114, 199 – 212.en_US
dc.identifier.citedreferenceWall, P. M. & Messier, C. ( 2001 ) Methodological and conceptual issues in the use of the elevated plus-maze as a psychological measurement instrument of animal anxiety-like behavior. Neurosci. Biobehav. Rev., 25, 275 – 286.en_US
dc.identifier.citedreferenceWeiss, S. M., Wadsworth, G., Fletcher, A. & Dourish, C. T. ( 1998 ) Utility of ethological analysis to overcome locomotor confounds in elevated maze models of anxiety. Neurosci. Biobehav. Rev., 23, 265 – 271.en_US
dc.identifier.citedreferenceYilmazer-Hanke, D. M., Roskoden, T., Zilles, K. & Schwegler, H. ( 2003 ) Anxiety-related behavior and densities of glutamate, GABA A, acetylcholine and serotonin receptors in the amygdala of seven inbred mouse strains. Behav. Brain Res., 145, 145 – 159.en_US
dc.identifier.citedreferenceYin, J. C., Wallach, J. S., Del Vecchio, M., Wilder, E. L., Zhou, H., Quinn, W. G. & Tully, T. ( 1994 ) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell, 79, 49 – 58.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.