Show simple item record

A Microbial Strategy to Multiply in Macrophages: The Pregnant Pause

dc.contributor.authorSwanson, Michele S.en_US
dc.contributor.authorFernandez-Moreia, Estebanen_US
dc.date.accessioned2010-06-01T19:22:30Z
dc.date.available2010-06-01T19:22:30Z
dc.date.issued2002-03en_US
dc.identifier.citationSwanson, Michele S . ; Fernandez-Moreia, Esteban (2002). "A Microbial Strategy to Multiply in Macrophages: The Pregnant Pause." Traffic 3(3): 170-177. <http://hdl.handle.net/2027.42/72518>en_US
dc.identifier.issn1398-9219en_US
dc.identifier.issn1600-0854en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72518
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11886587&dopt=citationen_US
dc.format.extent138080 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science, Ltden_US
dc.rightsBlackwell Munksgaard, 2002en_US
dc.subject.otherAutophagyen_US
dc.subject.otherCoxiellaen_US
dc.subject.otherLegionellaen_US
dc.subject.otherLeishmaniaen_US
dc.subject.otherLysosomesen_US
dc.subject.otherMacrophagesen_US
dc.subject.otherMorphogenesisen_US
dc.subject.otherPhagosomesen_US
dc.titleA Microbial Strategy to Multiply in Macrophages: The Pregnant Pauseen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109–0620, USAen_US
dc.identifier.pmid11886587en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72518/1/j.1600-0854.2002.030302.x.pdf
dc.identifier.doi10.1034/j.1600-0854.2002.030302.xen_US
dc.identifier.sourceTrafficen_US
dc.identifier.citedreferenceHackstadt T. Redirection of host vesicle trafficking pathways by intracellular parasites. Traffic 2000; 1: 93 – 99.en_US
dc.identifier.citedreferenceHerwaldt BL. Leishmaniasis. Lancet 1999; 354: 1191 – 1199.en_US
dc.identifier.citedreferenceNorlander L. Q fever epidemiology and pathogenesis. Microbes Infect 2000; 2: 417 – 424.en_US
dc.identifier.citedreferenceSwanson MS, Hammer BK. Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 2000; 54: 567 – 613.en_US
dc.identifier.citedreferenceLa Scola B, Raoult D. Survival of Coxiella burnetii within free-living amoeba Acanthamoeba castellanii. Clin Microbiol Infect 2001; 7: 75 – 79.en_US
dc.identifier.citedreferenceCirillo JD, Falkow S, Tompkins LS, Bermudez LE. Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect Immun 1997; 65: 3759 – 3767.en_US
dc.identifier.citedreferenceWiniecka-Krusnell J, Linder E. Free-living amoebae protecting Legionella in water: The tip of an iceberg? Scand J Infect Dis 1999; 31: 383 – 385.en_US
dc.identifier.citedreferenceSacks DL, Modi G, Rowton E, Spath G, Epstein L, Turco SJ, Beverley SM. The role of phosphoglycans in Leishmania –sand fly interactions. Proc Natl Acad Sci USA 2000; 97: 406 – 411.en_US
dc.identifier.citedreferenceTurco SJ, Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol 1992; 46: 65 – 94.en_US
dc.identifier.citedreferenceMcConville MJ, Turco SJ, Ferguson MA, Sacks DL. Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage. EMBO J 1992; 11: 3593 – 3600.en_US
dc.identifier.citedreferenceWiebe ME, Burton PR, Shankel DM. Isolation and characterization of two cell types of Coxiella burnetii phase I. J Bacteriol 1972; 110: 368 – 377.en_US
dc.identifier.citedreferenceMcCaul TF, Williams JC. Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations. J Bacteriol 1981; 147: 1063 – 1076.en_US
dc.identifier.citedreferenceHeinzen RA, Hackstadt T. A developmental stage-specific histone H1 homolog of Coxiella burnetii. J Bacteriol 1996; 178: 5049 – 5052.en_US
dc.identifier.citedreferenceHeizen RA, Howe D, Mallavia LP, Rockey DD, Hackstadt T. Developmentally regulated synthesis of an unusually small, basic peptide by Coxiella burnetii. Mol Microbiol 1996; 22: 9 – 19.en_US
dc.identifier.citedreferenceSeshadri R, Hendrix LR, Samuel JE. Differential expression of translational elements by life cycle variants of Coxiella burnetii. Infect Immun 1999; 67: 6026 – 6033.en_US
dc.identifier.citedreferenceSeshadri R, Samuel JE. Characterization of a stress-induced alternate sigma factor, RpoS, of Coxiella burnetii and its expression during the development cycle. Infect Immun 2001; 69: 4874 – 4883.en_US
dc.identifier.citedreferenceRowbotham TJ. Current views on the relationships between amoebae, Legionellae and man. Is J Med Sci 1986; 22: 678 – 689.en_US
dc.identifier.citedreferenceBarker J, Brown MRW, Collier PJ, Farrell ID, Gilbert P. Relationship between Legionella pneumophila and Acanthamoeba polyphaga: physiological status and susceptibility to chemical inactivation. Appl Environ Microbiol 1992; 58: 2420 – 2425.en_US
dc.identifier.citedreferenceBarker J, Scaife H, Brown MRW. Intraphagocytic growth induces an antibiotic-resistant phenotype of Legionella pneumophila. Antimicrob Agents Chemother 1995; 39: 2684 – 2688.en_US
dc.identifier.citedreferenceCirillo JD, Falkow S, Tompkins LS. Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect Immun 1994; 62: 3254 – 3261.en_US
dc.identifier.citedreferenceBrieland JK, Fantone JC, Remick DG, LeGendre M, McClain M, Engleberg NC. The role of Legionella pneumophila -infected Hartmannella vermiformis as an infectious particle in a murine model of Legionnaires' disease. Infect Immun 1997; 65: 5330 – 5333.en_US
dc.identifier.citedreferenceHammer BK, Swanson MS. Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol 1999; 33: 721 – 731.en_US
dc.identifier.citedreferenceBachman MA, Swanson MS. RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol Microbiol 2001; 40: 1201 – 1214.en_US
dc.identifier.citedreferenceHammer BK, Suzuki E, Swanson M. A two-component regulator induces the transmission phenotype of stationary phase Legionella pneumophila. Mol Microbial 2002; in press.en_US
dc.identifier.citedreferenceKirby JE, Vogel JP, Andrews HL, Isberg RR. Evidence of pore-forming ability by Legionella pneumophila. Mol Microbiol 1998; 27: 323 – 336.en_US
dc.identifier.citedreferenceAlli OAT, Gao L-Y, Pedersen LL, Zink S, Radulic M, Doric M, Abu-Kwaik Y. Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila. Infect Immun 2000; 68: 6431 – 6440.en_US
dc.identifier.citedreferenceByrne B, Swanson MS. Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 1998; 66: 3029 – 3034.en_US
dc.identifier.citedreferenceDesjardins M, Descoteaux A. Inhibition of phagolysomal biogenesis by the Leishmania lipophosphoglycan. J Exp Med 1997; 185: 2061 – 2068.en_US
dc.identifier.citedreferenceTurco SJ, Spath GF, Beverley SM. Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends Parasitol 2001; 17: 223 – 226.en_US
dc.identifier.citedreferenceScianimanico S, Desrosiers M, Dermine JF, Meresse S, Descoteaux A, Desjardins M. Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes. Cell Microbiol 1999; 1: 19 – 32.en_US
dc.identifier.citedreferenceSpath GF, Epstein L, Leader B, Singer SM, Avila HA, Turco SJ, Beverly SM. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc Natl Acad Sci USA 2000; 97: 9258 – 9263.en_US
dc.identifier.citedreferenceHolm A, Tejle K, Magnusson KE, Descoteaux A, Rasmusson B. Leishmania donovani lipophosphoglycan causes periphagosomal actin accumulation: correlation with impaired translocation of PKC alpha and defective phagosome maturation. Cell Microbiol 2001; 3: 439 – 447.en_US
dc.identifier.citedreferenceChang KP, Dwyer DM. Multiplication of a human parasite ( Leishmania donovani ) in phagolysosomes of hamster macrophages in vitro. Science 1976; 193: 678 – 680.en_US
dc.identifier.citedreferenceRussell DG, Xu S, Chakraborty P. Intracellular trafficking and the parasitophorous vacuole of Leishmania mexicana -infected macrophages. J Cell Sci 1992; 103: 1193 – 1210.en_US
dc.identifier.citedreferenceLang T, Hellio R, Kaye PM, Antoine JC. Leishmania donovani -infected macrophages. characterization of the parasitophorous vacuole and potential role of this organelle in antigen presentation. J Cell Sci 1994; 107: 2137 – 2150.en_US
dc.identifier.citedreferenceAntoine JC, Prina E, Jouanne C, Bongrand P. Parasitophorous vacuoles of Leishmania amazonensis -infected macrophages maintain an acidic pH. Infect Immun 1990; 58: 779 – 787.en_US
dc.identifier.citedreferenceGupta N, Goyal N, Rastogi AK. In vitro cultivation and characterization of axenic amastigotes of Leishmania. Trends Parasitol 2001; 17: 150 – 153.en_US
dc.identifier.citedreferenceHowe D, Mallavia LP. Coxiella burnetii exhibits morphological change and delays phagolysosomal fusion after internalization by J774A. 1 Cells Infect Immun 2000; 68: 3815 – 3821.en_US
dc.identifier.citedreferenceHeinzen RA. Intracellular development of Coxiella burnetii. In: Anderson B, Friedman H, Bendinelli M, eds. Rickettsial Infection and Immunity. New York: Plenum Press; 1997. p. 99 – 129.en_US
dc.identifier.citedreferenceCoers JN, Monahan C, Roy CR. Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth. Nat Cell Biol 1999.en_US
dc.identifier.citedreferenceAkporiaye ET, Rowatt JD, Aragon AA, Baca OG. Lysosomal response of a murine macrophage-like cell line persistently infected with Coxiella burnetii. Infect Immun 1983; 40: 1155 – 1162.en_US
dc.identifier.citedreferenceBurton PR, Stueckemann J, Welsh RM, Paretsky D. Some ultrastructural effects of persistent infections by the rickettsia Coxiella burnetii in mouse L cells and green monkey kidney (Vero) cells. Infect Immun 1978; 21: 556 – 566.en_US
dc.identifier.citedreferenceHeinzen RA, Scidmore MA, Rockey DD, Hackstadt T. Differential interaction with the endocytic and exocytic pathways distinguish parasitophorus vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect Immun 1996; 64: 796 – 809.en_US
dc.identifier.citedreferenceMaurin MA, Benoliel AM, Bongrand P, Raoult D. Phagolysosomes of Coxiella burnetii -infected cell lines maintain an acidic pH during persistent infection. Infect Immun 1992; 60: 5013 – 5016.en_US
dc.identifier.citedreferenceHackstadt T, Williams JC. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci USA 1981; 78: 3240 – 3244.en_US
dc.identifier.citedreferenceBerger KH, Isberg RR. Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 1993; 7: 7 – 19.en_US
dc.identifier.citedreferenceClemens DL, Horwitz MA. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 1995; 181: 257 – 270.en_US
dc.identifier.citedreferenceHorwitz MA. The Legionnaires' disease bacterium ( Legionella pneumophila ) inhibits phagosome lysosome fusion in human monocytes. J Exp Med 1983; 158: 2108 – 2126.en_US
dc.identifier.citedreferenceJoshi AD, Sturgill-Koszycki S, Swanson MS. Evidence that Dot-dependent and -independent isolate the Legionella pneumophila phagosome from the endocytic network. Cell Microbiol 2001; 3: 99 – 114.en_US
dc.identifier.citedreferenceRoy CR, Berger KH, Isberg RR. Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 1998; 28: 663 – 674.en_US
dc.identifier.citedreferenceSturgill-Koszycki S, Swanson MS. Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. J Exp Med 2000; 192: 1261 – 1272.en_US
dc.identifier.citedreferenceHorwitz MA, Maxfield FR. Legionella pneumophila inhibits acidification of its phagosome in human monocytes. J Cell Biol 1984; 99: 1936 – 1943.en_US
dc.identifier.citedreferenceKim J, Klionsky DJ. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 2000; 69: 303 – 342.en_US
dc.identifier.citedreferenceHorwitz MA. Formation of a novel phagosome by the Legionnaires' disease bacterium ( Legionella pneumophila ) in human monocytes. J Exp Med 1983; 158: 1319 – 1331.en_US
dc.identifier.citedreferenceSwanson MS, Isberg RR. Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect Immun 1995; 63: 3609 – 3620.en_US
dc.identifier.citedreferenceYuan W, Stromhaug PE, Dunn WA, Jr. Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein. Mol Biol Cell 1999; 10: 1353 – 1366.en_US
dc.identifier.citedreferenceSchaible UE, Schlesinger PH, Steinberg TH, Mangel WF, Kobayashi T, Russell DG. Parasitophorous vacuoles of Leishmania mexicanao acquire macromolecules from the host cell cytosol via two independent routes. J Cell Sci 1999; 112: 681 – 693.en_US
dc.identifier.citedreferenceDorn BR, Dunn WA, Jr, Progulske-Fox A. Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells. Infect Immun 2001; 69: 5698 – 5708.en_US
dc.identifier.citedreferencePizarro-Cerda J, Meresse S, Parton RG, van der Goot G, Sola-Landa A, Lopez-Goni I, Moreno E, Gorvel JP. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun 1998; 66: 5711 – 5724.en_US
dc.identifier.citedreferenceHackstadt T, Williams JC. pH dependence of the Coxiella burnetii glutamate transport system. J Bacteriol 1983; 154: 598 – 603.en_US
dc.identifier.citedreferenceHackstadt T, Williams JC. Stability of the adenosine 5′-triphosphate pool in Coxiella burnetii: influence of pH and substrate. J Bacteriol 1981; 148: 419 – 425.en_US
dc.identifier.citedreferenceHackstadt T. Estimation of the cytoplasmic pH of Coxiella burnetii and effect of substrate oxidation on proton motive force. J Bacteriol 1983; 154: 591 – 597.en_US
dc.identifier.citedreferenceMiao L, Stafford A, Nir S, Turco SJ, Flanagan TD, Epand RM. Potent inhibition of viral fusion by the lipophosphoglycan of Leishmania donovani. Biochemistry 1995; 34: 4676 – 4683.en_US
dc.identifier.citedreferenceGiorgione JR, Turco SJ, Epand RM. Transbilayer inhibition of protein kinase C by the lipophosphoglycan from Leishmania donovani. Proc Natl Acad Sci USA 1996; 93: 11634 – 11639.en_US
dc.identifier.citedreferenceFtacek P, Skultety L, Toman R. Phase variation of Coxiella burnetii strain Priscilla: influence of this phenomenon on biochemical features of its lipopolysaccharide. J Endotoxin Res 2000; 6: 369 – 376.en_US
dc.identifier.citedreferenceMoos A, Hackstadt T. Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect Immun 1987; 55: 1144 – 1150.en_US
dc.identifier.citedreferenceBaca OG, Akporiaye ET, Aragon AS, Martinez IL, Robles MV, Warner NL. Fate of phase I and phase II Coxiella burnetii in several macrophage-like tumor cell lines. Infect Immun 1981; 33: 258 – 266.en_US
dc.identifier.citedreferenceKnirel YA, Rietschel ET, Marre R, Zahringer U. The structure of the O-specific chain of Legionella pneumophila serogroup 1 lipopolysaccharide. Eur J Biochem 1994; 221: 239 – 245.en_US
dc.identifier.citedreferenceLÜneberg E, ZÄhringer U, Knirel YA, Steinmann D, Hartmann M, Steinmetz I, Rohde M, Kohl J, Frosch M. Phase-variable expression of lipopolysaccharide contributes to the virulence of Legionella pneumophila. J Exp Med 1998; 188: 49 – 60.en_US
dc.identifier.citedreferenceSexton JA, Vogel JP. Utilization of type IVB secretion systems by intracellular pathogens. Traffic 2002; 3: 178 – 185.en_US
dc.identifier.citedreferenceHorwitz MA. Phagocytosis of the Legionnaires' disease bacterium ( Legionella pneumophila ) occurs by a novel mechanism: engulfment within a pseudopod coil. Cell 1984; 36: 27 – 33.en_US
dc.identifier.citedreferenceBozue JA, Johnson W. Interaction of Legionella pneumophila with Acanthamoeba castellanii: uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion. Infect Immun 1996; 64: 668 – 673.en_US
dc.identifier.citedreferenceRittig MG, Schroppel K, Seack K-H, Sander U, N'Diaye E-N, Maridonneau-Parini I, Solbach W, Bogdan C. Coiling phagocytosis of Trypanosomatids and fungal cells. Infect Immun 1998; 66: 4331 – 4339.en_US
dc.identifier.citedreferenceRittig MG, Burmester G-R, Krause A. Coiling phagocytosis: when the zipper jams, the cup is deformed. Trends Microbiol 1998; 6: 384 – 388.en_US
dc.identifier.citedreferenceWatarai M, Derre I, Kirby J, Growney JD, Dietrich WF, Isberg RR. Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J Exp Med 2001; 194: 1081 – 1096.en_US
dc.identifier.citedreferenceMeconi S, Jacomo V, Boquet P, Raoult D, Mege JL, Capo C. Coxiella burnetii induces reorganization of the actin cytoskeleton in human monocytes. Infect Immun 1998; 66: 5527 – 5533.en_US
dc.identifier.citedreferenceBerger KH, Merriam JJ, Isberg RI. Altered intracellular targeting properties associated with mutations in the Legionella pneumophila dotA gene. Mol Microbiol 1994; 14: 809 – 822.en_US
dc.identifier.citedreferenceClemens DL, Horwitz MA. Membrane sorting during phagocytosis. selective exclusion of major histocompatibility complex molecules but not complement receptor CR3 during conventional and coiling phagocytosis. J Exp Med 1992; 175: 1317 – 1326.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.