Show simple item record

Can we learn from the pathogenetic strategies of group A hemolytic streptococci how tissues are injured and organs fail in post-infectious and inflammatory sequelae?

dc.contributor.authorGinsburg, Isaacen_US
dc.contributor.authorWard, Peter A.en_US
dc.contributor.authorVarani, Jamesen_US
dc.date.accessioned2010-06-01T19:23:37Z
dc.date.available2010-06-01T19:23:37Z
dc.date.issued1999-09en_US
dc.identifier.citationGinsburg, Isaac; Ward, Peter A; Varani, James (1999). "Can we learn from the pathogenetic strategies of group A hemolytic streptococci how tissues are injured and organs fail in post-infectious and inflammatory sequelae?." FEMS Immunology & Medical Microbiology 25(4): 325-338. <http://hdl.handle.net/2027.42/72535>en_US
dc.identifier.issn0928-8244en_US
dc.identifier.issn1574-695Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72535
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=10497863&dopt=citationen_US
dc.description.abstractThe purpose of this review-hypothesis is to discuss the literature which had proposed the concept that the mechanisms by which infectious and inflammatory processes induce cell and tissue injury, in vivo, might paradoxically involve a deleterious synergistic ‘cross-talk’, among microbial- and host-derived pro-inflammatory agonists. This argument is based on studies of the mechanisms of tissue damage caused by catalase-negative group A hemolytic streptococci and also on a large body of evidence describing synergistic interactions among a multiplicity of agonists leading to cell and tissue damage in inflammatory and infectious processes. A very rapid cell damage (necrosis), accompanied by the release of large amounts of arachidonic acid and metabolites, could be induced when subtoxic amounts of oxidants (superoxide, oxidants generated by xanthine-xanthine oxidase, HOCl, NO), synergized with subtoxic amounts of a large series of membrane-perforating agents (streptococcal and other bacterial-derived hemolysins, phospholipases A 2 and C, lysophosphatides, cationic proteins, fatty acids, xenobiotics, the attack complex of complement and certain cytokines). Subtoxic amounts of proteinases (elastase, cathepsin G, plasmin, trypsin) very dramatically further enhanced cell damage induced by combinations between oxidants and the membrane perforators. Thus, irrespective of the source of agonists, whether derived from microorganisms or from the hosts, a triad comprised of an oxidant, a membrane perforator, and a proteinase constitutes a potent cytolytic cocktail the activity of which may be further enhanced by certain cytokines. The role played by non-biodegradable microbial cell wall components (lipopolysaccharide, lipoteichoic acid, peptidoglycan) released following polycation- and antibiotic-induced bacteriolysis in the activation of macrophages to release oxidants, cytolytic cytokines and NO is also discussed in relation to the pathophysiology of granulomatous inflammation and sepsis. The recent failures to prevent septic shock by the administration of only single antagonists is disconcerting. It suggests, however, that since tissue damage in post-infectious syndromes is caused by synergistic interactions among a multiplicity of agents, only cocktails of appropriate antagonists, if administered at the early phase of infection and to patients at high risk, might prevent the development of post-infectious syndromes.en_US
dc.format.extent419928 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1999 Federation of European Microbiological Societiesen_US
dc.subject.otherStreptococcusen_US
dc.subject.otherToxinen_US
dc.subject.otherLysosomal Hydrolaseen_US
dc.subject.otherSynergismen_US
dc.subject.otherPost-infectious Sequelaen_US
dc.subject.otherSepsisen_US
dc.titleCan we learn from the pathogenetic strategies of group A hemolytic streptococci how tissues are injured and organs fail in post-infectious and inflammatory sequelae?en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pathology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Oral Biology, Hebrew University-Hadassah School of Dental Medicine Founded by the Alpha Omega Fraternity, Jerusalem 91120, Israelen_US
dc.identifier.pmid10497863en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72535/1/j.1574-695X.1999.tb01357.x.pdf
dc.identifier.doi10.1111/j.1574-695X.1999.tb01357.xen_US
dc.identifier.sourceFEMS Immunology & Medical Microbiologyen_US
dc.identifier.citedreference[1] Ginsburg, I. (1986) Streptococcus. In: Infectious Diseases and and Medical Microbiology, 2nd edn. (Brause, A.I., Davis, C.E. and Fierer, J. (Eds.), pp. 242–253. W.B. Saunders, Philadelphia, PA.en_US
dc.identifier.citedreference[2] Ginsburg, I. (1972) Mechanisms of cell and tissue injury induced by group A streptococci: relation to poststreptococcal sequelae. J. Infect. Dis. 126, 294–340, 419–456.en_US
dc.identifier.citedreferenceAvolnik, I.Z., Sexton, D.J. ( 1994 ) Necrotizing fasciitis and myositis caused by group A streptococci: Epidemiology, diagnosis and treatment of ‘flesh-eating’ bacteria. North Carolina Med. J. 55, 464 – 466.en_US
dc.identifier.citedreferenceSchlievert, P.M., Assimacopoulos, A.P., Cleary, P.P. ( 1996 ) Severe invasives group A streptococcal disease: Clinical description and mechanisms of pathogenesis. J. Lab. Clin. Med. 127, 12 – 22.en_US
dc.identifier.citedreferenceFerrieri, P., Horaud, T. ( 1997 ) Unraveling the mysteries of streptococci and their relation with the host. Trends Microbiol. 5, 5 – 7.en_US
dc.identifier.citedreferenceStevens, D.L. ( 1997 ) The toxins of group A streptococcus, the flesh eating bacteria. Immunol. Invest. 26, 129 – 150.en_US
dc.identifier.citedreferenceStollerman, G.H. ( 1997 ) Changing streptococci and prospects for the global eradication of rheumatic fever. Prospects Biol. Med. 40, 165 – 189.en_US
dc.identifier.citedreferenceKrause, R. ( 1997 ) Microbial factors in disease emergence illustrated by streptococcal toxic shock syndrome. FEMS Immunol. Med. Microbiol. 18, 227 – 232.en_US
dc.identifier.citedreferenceFile, T.M. Jr., Tan, S.J., DiPresio, J.R. ( 1998 ) Group A streptococcal necrotizing fasciitis. Diagnosis and treating the ‘flesh-eating’ bacterial syndrome. Cleveland Clin. J. Med. 65, 241 – 249.en_US
dc.identifier.citedreferencePichichero, M.E. ( 1998 ) Group A beta-haemolytic streptococcal infections. Pediatr. Rev. 19, 291 – 302.en_US
dc.identifier.citedreference[11] Ginsburg, I. (1985) Streptococcal enzymes and virulence. In: Bacterial Enzymes and Virulence (Holder, I., Ed.), pp. 122–144. CRC Press, Boca Raton, FL.en_US
dc.identifier.citedreferenceGinsburg, I. ( 1994 ) Can haemolytic streptococci be considered ‘forefathers’ of modern phagocytes? Both cell types freely migrate in tissues and destroy host cells by a ‘synergistic cross-talk’ among their secreted agonists. Comp. Biochem. Physiol. 109C, 147 – 158.en_US
dc.identifier.citedreferenceGinsburg, I., Kohen, R. ( 1995 ) Cell damage in inflammatory and infectious sites might involve a coordinated ‘cross-talk’ among oxidants, microbial hemolysins and amphiphiles, cationic proteins, phospholipases, fatty acids, proteinases and cytokines (an overview). Free. Radical Res. 22, 489 – 517.en_US
dc.identifier.citedreferenceGinsburg, I. ( 1998 ) Could synergistic interactions among reactive oxygen sepecies, proteinases, membrane-perforating enzymes, hydrolases, microbial hemolysins and cytokines be the main cause of tissue damage in infectious and inflammatory conditions ?. Med. Hypothesis 51, 337 – 346.en_US
dc.identifier.citedreferenceGinsburg, I. ( 1959 ) Action of streptococcal haemolysins and a proteolytic enzyme on Ehrlich ascites tumor cells. Br. J. Exp. Pathol. 40, 417 – 423.en_US
dc.identifier.citedreferenceShanley, T.P., Schrier, D., Kapur, V., Kehoe, M., Musser, J.M., Ward, P.A. ( 1996 ) Streptococcal cysteine-protease augments lung injury induced by products of groups A streptococci. Infect. Immun. 64, 870 – 877.en_US
dc.identifier.citedreferenceLukomsky, S., Sreevastan, S., Amberg, C., Reichradt, W., Woischnik, M., Podbielski, A., Musser, J.M. ( 1997 ) Inactivation of Streptococcus pyogenes extracellular cysteine protease significantly decreases mouse lethality of serotypes M3 and M49 strains. J. Clin. Invest. 99, 2574 – 2580.en_US
dc.identifier.citedreferenceSmith, J.A. ( 1994 ) Neutrophils, host defense and inflammation: A double- edged sword. J. Leukocyte Biol. 56, 672 – 686.en_US
dc.identifier.citedreferenceDallegri, F., Ottonell, L. ( 1997 ) Tissue injury in neutrophilic inflammation. Inflamm. Res. 46, 382 – 391.en_US
dc.identifier.citedreferenceYao, Y.M., Redl, H., Schlag, G. ( 1998 ) The inflammatory basis of trauma/shock-associated multiple organ failure. Inflamm. Res. 47, 201 – 210.en_US
dc.identifier.citedreference[21] Sbarra, A.J. and Straus, R.R. (1988) The Respiratory Burst and Its Physiological Significance. Plenum Press, New York.en_US
dc.identifier.citedreference[22] Klebanoff, S.F. (1992) Phagocytic cells, products of oxygen metabolism. In: Inflammation: Basic Principles and Clinical Correlates (Gallin, J.I., Goldstein, I.M. and Snyderman, R., Eds.), pp. 541–588. Raven Press, New York.en_US
dc.identifier.citedreferenceBabior, B.M. ( 1994 ) Activation of the respiratory burst oxidase. Environ. Health Perspect. 102, 53 – 55.en_US
dc.identifier.citedreference[24] Halliwell, B. and Gutteridge, J.M.C. (1989) Free Radicals in Biology and Medicine. Clarendon Press, Oxford.en_US
dc.identifier.citedreferenceHalliwell, B., Gutteridge, J.M.C. ( 1993 ) Free radicals in disease processes: A compilation of cause and consequence. Free Radical Res. Commun. 19, 141 – 158.en_US
dc.identifier.citedreferenceFarber, L.L., Kyle, M.E., Coleman, J.B. ( 1990 ) Mechanisms of cell injury by active oxygen species. Lab. Invest. 162, 670 – 679.en_US
dc.identifier.citedreferenceMorel, F., Doussier, L., Vignais, P.V. ( 1991 ) The superoxide-generating oxidase of phagocytic cells, physiology, molecular and pathobiological aspects. Eur. J. Biochem. 201, 523 – 546.en_US
dc.identifier.citedreferenceRice-Evans, C.A., Diplock, A.T. ( 1993 ) Current status of antioxidant therapy. Free Radical Biol. Med. 15, 77 – 96.en_US
dc.identifier.citedreferenceRosen, G.M., Ramos, P., Cohen, M.S., Brittigan, B.E. ( 1995 ) Free radicals and phagocytic cells. FASEB J. 9, 200 – 209.en_US
dc.identifier.citedreferenceReiter, R.J. ( 1995 ) Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J. 9, 526 – 533.en_US
dc.identifier.citedreferenceSegal, A.W., Abo, A. ( 1993 ) The biochemical basis of NADPH oxidase of phagocytes. Trends Biochem. Sci. 18, 43 – 47.en_US
dc.identifier.citedreference[32] Rice-Evans, C.A. and Burdon, R.H. (Eds.) (1994) Free Radical Damage and Its Control. Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceSchraufstatter, I.U., Hyslop, P.A., Jackson, J., Revak, S.D., Cohrnane, C.C. ( 1987 ) Oxidant and protease injury of the lung. Bull. Eur. Physiopathol. Respir. 23, 257 – 302.en_US
dc.identifier.citedreferenceWeiss, S.J. ( 1989 ) Tissue destruction by neutrophils. New Engl. J. Med. 320, 365 – 376.en_US
dc.identifier.citedreferenceGinsburg, I., Ram, N. ( 1960 ) Effect of antibodies and plasmin on Ehrlich ascites tumor cells. Nature 185, 328 – 330.en_US
dc.identifier.citedreferenceGinsburg, I., Kohen, R. ( 1995 ) Synergistic effects among oxidants, membrane-damaging agents, fatty acids, proteinases and xenobiotics: Killing of epithelial cells and release of arachidonic acid. Inflammation 19, 101 – 118.en_US
dc.identifier.citedreferenceGinsburg, I., Gibbs, D.F., Schuger, L., Johnson, K.L., Ryan, U.S., Ward, P.A., Varani, J. ( 1989 ) Vascular endothelial cell killing by combinations of membrane active agents and hydrogen peroxide. Free Radical Biol. Med. 7, 369 – 376.en_US
dc.identifier.citedreferenceVarani, J., Ginsburg, I., Schuger, L., Gibbs, D.F., Bromberg, J., Johnson, K.J., Ryan, U.S., Ward, P.A. ( 1989 ) Endothelial cell killing by neutrophils: synergistic interaction of oxygen products and proteases. Am. J. Pathol. 125, 435 – 438.en_US
dc.identifier.citedreferenceGinsburg, I., Misgav, R., Pinson, A., Varani, J., Kohen, R. ( 1992 ) Synergism among oxidants, proteinases, phospholipases, microbial hemolysins, cationic proteins and cytokines. Inflammation 16, 519 – 538.en_US
dc.identifier.citedreferenceGinsburg, I., Mitra, R.S. Jr., Gibbs, D.F., Varani, J., Kohen, R. ( 1993 ) Killing of endothelial cells and the release of arachidonic acid: Synergistic effects among hydrogen peroxide, membrane-damaging agents, cationic substances and proteinases and modulation by inhibitors. Inflammation 17, 295 – 319.en_US
dc.identifier.citedreferenceGinsburg, I., Varani, J. ( 1993 ) Interaction of viable streptococci and hydrogen peroxide in killing of vascular endothelial cells. Free Radical Biol. Med. 14, 495 – 500.en_US
dc.identifier.citedreferenceGinsburg, I., Kohen, R., Ligumski, M. ( 1994 ) Ethanol synergizes with hydrogen peroxide, peroxyl radical and trypsin to kill epithelial cells in culture. Free Radical Biol. Med. 16, 261 – 269.en_US
dc.identifier.citedreferenceGinsburg, I., Gibbs, D.F., Tarapchak, S., Varani, J. ( 1996 ) A novel approach to the assessment of toxicity of hexachlorocyclohexane (lindane) and of certain organic solvents: Killing of cells in culture and the release of arachidonate by synergism among H 2 O 2, membrane-damaging agents, histone and trypsin. In Vitro Toxicol. 9, 305 – 313.en_US
dc.identifier.citedreferenceLichtenstein, A.K., Ganz, T., Selsted, M., Lherer, R.I. ( 1988 ) Cytolysis mediated by hydrogen peroxide combined with peptide defensins. Cell. Immunol. 114, 104 – 116.en_US
dc.identifier.citedreferenceGinsburg, I., Yedgar, S., Varani, J. ( 1997 ) Diethyldithiocarbamate (DDC) and nitric oxide synergize with oxidants and with membrane-damaging agents to injure mammalian cells. Free Radical Res. 27, 143 – 164.en_US
dc.identifier.citedreferenceDan, P., Nizan, D., Dagan, A., Ginsburg, I., Yedgar, S. ( 1996 ) H 2 O 2 degrades cell surface proteoglycans and exposes the cells to lysis by phospholipase A2: A novel mechanism for cell damage in inflammatory processes. FEBS Lett. 383, 57 – 78.en_US
dc.identifier.citedreferenceYedgar, S., Dan, P., Ginsburg, I., Lossos, I.S., Breuer, R. ( 1995 ) Control of inflammatory processes by a cell-impermeable inhibitor of phospholipase A 2. Agents Actions 46S, 77 – 84.en_US
dc.identifier.citedreferenceGinsburg, I., Sadovnic, M. ( 1998 ) Gamma globulin, Evans blue, aprotinin, A PLA2 inhibitor, tetracycline and antioxidants protect epithelial cells against damage induced by synergism among streptococcal hemolysins, oxidants, and proteinases: relation to the prevention of post-streptococcal sequelae and septic shock. FEMS Immunol. Med. Microbiol. 22, 247 – 256.en_US
dc.identifier.citedreferenceBaird, B.R., Cherionis, J.C., Sandhaus, R.A., Berger, E.M., Repine, J.E. ( 1986 ) Oxygen metabolites and neutrophil elastase synergistically cause edematous injury in isolated rat lungs. J. Appl. Physiol. 61, 2224 – 2229.en_US
dc.identifier.citedreferenceRodell, T.C., Cherionis, J.C., Ohnemous, C.L., Piermattei, D.J., Repine, J.E. ( 1987 ) Xanthine-oxidase mediated elastase-induced injury to isolated lungs and endothelium. J. Appl. Physiol. 63, 2159 – 2163.en_US
dc.identifier.citedreferenceRodell, T.C., Cherionis, J.C., Repine, J.E. ( 1989 ) Xanthine oxidase-derived toxic oxygen metabolites contribute to lung injury from neutrophil elastase. Chest 93, 146 – 153.en_US
dc.identifier.citedreferenceMendis, A.H.W., Venaile, T.J., Robinson, B.W.S. ( 1990 ) Study of human epithelial cell detachment and damage: Effects of proteases and oxidants. Immunol. Cell. Biol. 68, 95 – 105.en_US
dc.identifier.citedreferenceFujiata, H., Morita, I., Ishikawa, K.A., Sei-itsu, M. ( 1996 ) The synergisitc effect of elastase and hydrogen peroxide on vascular endothelial cells. J. Atheroscler. Thromb. 3, 32 – 38.en_US
dc.identifier.citedreferenceMcDonald, R.J., Brickner, L.V., Repine, J.E. ( 1989 ) Neutrophil elastase augments acute edematous injury in isolated rat lung perfused with neutrophil cytoplasts. Am. J. Respir. Dis. 140, 1825 – 1827.en_US
dc.identifier.citedreferenceKnight, P.R., Druskovich, G., Trait, A.R. et al. ( 1992 ) The role of neutrophils, oxidants, and proteases in the pathogensis of acid pulmonary injury. Anesthesiology 77, 772 – 778.en_US
dc.identifier.citedreferenceWeiss, D.J., Curnutte, J.T., Regiant, S. ( 1986 ) Neutrophil-mediated solubilization of sub-endothelial matrix: oxidative and non-oxidative mechanisms of proteolysis used by normal and chronic granulomatous disease phagocytes. J. Immunol. 136, 636 – 641.en_US
dc.identifier.citedreferenceMcGowan, S.E., Murry, J.J. ( 1987 ) Direct effect of neutrophil oxidants and elastase-induced extra cellular matrix proteolysis. Am. Rev. Respir. Dis. 125, 1286 – 1293.en_US
dc.identifier.citedreferenceKlebanoff, S.J., Kinsella, M.G., Wight, T.N. ( 1993 ) Degradation of endothelial matrix heparan sulfate proteoglycan by elastase and the myeloperoxidase- 2 O 2 -chloride system. Am. J. Physiol. 193, 907 – 917.en_US
dc.identifier.citedreferenceYoshimura, K., Nakagawa, S., Koyama, S., Kobayshi, T., Homma, T. ( 1994 ) Role of neutrophil elastase and superoxide anion in leukotriene B4-induced lung injury in rabbit. J. Appl. Physiol. 76, 91 – 96.en_US
dc.identifier.citedreferencePontremoli, S., Melloni, E., Michetti, M., Sacco, O., Sparatore, B., Salamino, F., Damiani, G., Horecker, B.L. ( 1986 ) Cytolytic effect of neutrophils: Role for a membrane-bound neutral proteinase. Proc. Natl. Acad. Sci. USA 83, 1658 – 1689.en_US
dc.identifier.citedreferenceWeiss, D.J., Aird, B., Murtaugh, M.P. ( 1992 ) Neutrophil-induced immunoglobulin binding to erythrocytes involves proteolytic and oxidative injury. J. Leukocyte Biol. 51, 19 – 23.en_US
dc.identifier.citedreferenceMiller, R.A., Brittigan, B.E. ( 1995 ) Protease-cleaved iron transferrin augment oxidant-mediated endothelial cell injury via hydroxyl radical formation. J. Clin. Invest. 95, 1491 – 1500.en_US
dc.identifier.citedreferenceAmitani, R., Wilson, R., Rutman, A., Read, R., Ward, C., Burnett, D., Stokely, R.A., Cole, P.G. ( 1991 ) Effect of human neutrophil elastase and Pseudomonas aeruginosa proteinases on human respiratory epithelium. Am. J. Respir. Cell. Mol. Biol. 4, 26 – 32.en_US
dc.identifier.citedreferenceWestering, S.V., Mannesse-Lazaroms, S.P.G., Dijkman, J.H., Hiemstra, P.S. ( 1997 ) Effect of neutrophil serine proteinase and defensins on lung epithelial cells: modulation of cytotoxicty and IL-8 production. J. Leukocyte Biol 62, 217 – 226.en_US
dc.identifier.citedreferenceLinas, S.L., Whittenburg, D., Repine, J.E. ( 1991 ) Role of neutrophil derived oxidants and elastase in lipopolysaccharide-mediated renal injury. Kidney Int. 39, 618 – 623.en_US
dc.identifier.citedreferenceMaheswaran, S.K., Kannan, M.S., Weiss, D.J., Reddy, K.R., Towsend, E.L., Yoo, H.S., Lee, B.W., Whiteley, L.O. ( 1993 ) Enhancement of neutrophil-mediated injury to bovine pulmonary epithelial cells by Pasteurella haemolytica leukotoxin. Infect. Immun. 61, 2618 – 2625.en_US
dc.identifier.citedreferenceStyrt, B., Walker, R.D., White, J.C. ( 1989 ) Neutrophil oxidative metabolisms after exposure to bacterial phsopholipase C. J. Lab. Clin. Med. 114, 51 – 57.en_US
dc.identifier.citedreferenceGinsburg, I., Ward, P.A., Varani, J. ( 1989 ) Lysophosphatides enhance superoxide responses of stimulated neutrophils. Inflammation 13, 163 – 174.en_US
dc.identifier.citedreferenceKanamatsu, M., Takagi, K., Suketa, Y. ( 1994 ) Synergistic enhancement of nitrite on lysophosphatide-mediated cytolysis. Biol. Pharm. Bull. 17, 78 – 81.en_US
dc.identifier.citedreferenceSaperstein, A., Spech, R.A., Witzgall, R., Bonventre, J.V. ( 1996 ) Cytosolic phospholipase A 2 but not secretory PLA 2 potentiates hydrogen peroxide cytotoxicity in kidney epithelial cells. J. Biol. Chem. 271, 21505 – 21513.en_US
dc.identifier.citedreferenceKaraman, R.J., Gupta, M.P., Gracia, J.G., Hart, C.M. ( 1997 ) Exogenous fatty acids modulate the function and cytotoxic response of cultured pulmonary artery endothelial cells to oxidant stress. J. Lab. Clin. Med. 29, 548 – 556.en_US
dc.identifier.citedreferenceGilmont, R.R., Dardano, A., Engle, J.S., Adamson, B.S., Welsh, M.J., Li, T., Remick, D.G., Smith, D.J. Jr., Rees, R.S. ( 1996 ) TNF-Α potentiates oxidant and reperfusion-induced endothelial cell injury. J. Surg. Res. 15, 175 – 182.en_US
dc.identifier.citedreferenceImanishi, H., Scales, W.E., Vambbell, D.A. ( 1997 ) Tumor necrosis factor alpha alters the cytotoxic effect of hydrogen peroxide in cultured hepatocytes. Biochem. Biophys. Res. Commun. 23, 120 – 124.en_US
dc.identifier.citedreferenceYongquin, L.I., Ferrante, A., Poulos, A., Harvey, D.P. ( 1996 ) Neutrophil oxygen radicals generation: synergistic responses to tumor necrosis factor and mono/polyunsaturated fatty acids. J. Clin. Invest. 92, 1605 – 1609.en_US
dc.identifier.citedreferenceDavis, K.J.A., Lin, S.W., Pacific, R.E. ( 1987 ) Protein damage and degradation by oxygen radicals. IV. Degradation of denatured proteins. J. Biol. Chem. 262, 9914 – 9920.en_US
dc.identifier.citedreferenceStadtman, E.A. ( 1992 ) Protein oxidation and aging. Science 257, 1220 – 1224.en_US
dc.identifier.citedreferenceHilbi, H., Zychlinsky, A., Sansonetti, P.J. ( 1997 ) Macrophage apoptosis in microbial infections. Parasitiology 115 ( Suppl. ), S79 – S87.en_US
dc.identifier.citedreferenceZyclinsky, A., Sansonetti, P.J. ( 1997 ) Perspective series:host/pathogen interactions. Apoptosis in bacterial pathogenesis. J. Clin. Invest. 100, 493 – 495.en_US
dc.identifier.citedreferenceZyckinsky, A., Sansonetti, P.J. ( 1997 ) Apoptosis as proinflammatory event: what can we learn from bacteria-induced cell death ?. Trends Microbiol. 5, 201 – 294.en_US
dc.identifier.citedreferenceDishon, T., Finkel, R., Marcus, Z., Ginsburg, I. ( 1967 ) Cell-sensitizing factors of group A streptococci. Immunology 13, 555 – 565.en_US
dc.identifier.citedreferenceNeeman, N., Ginsburg, I. ( 1972 ) Red cell-sensitizing antigen of group A streptococci. II. Immunological and immunopathological properties. Israel J. Med. Sci. 8, 1807 – 1816.en_US
dc.identifier.citedreferenceHummell, S.H., Winkelstein, J.A. ( 1986 ) Bacterial lipoteichoic acid sensitizes host cells to destruction by autologous complement. J. Clin. Invest. 77, 1533 – 1538.en_US
dc.identifier.citedreferenceGinsburg, I., Fleigel, S.E.G., Ward, P.A., Varani, J. ( 1988 ) Lipoteichoic acid anti-lipoteichoic acid complexes induce superoxide generation by human neutrophils. Inflammation 12, 525 – 548.en_US
dc.identifier.citedreferenceKengatharan, K.M., De Kimpe, S., Robson, C., Foster, S.J., Thiemermann, C. ( 1998 ) Mechanisms of Gram-positive shock: identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock and multiple organ failure. J. Exp. Med. 188, 305 – 315.en_US
dc.identifier.citedreferenceEnglish, B.K., Patrick, C.C., Orlicek, S.L.etal. ( 1996 ) Lipoteichoic acid from viridans streptococci induces the production of tumor necrosis factor and nitric oxide by murine macrophages. J. Infect. Dis. 174, 1348 – 1351.en_US
dc.identifier.citedreferenceDe-Kimpe, D.J., Kengatharan, M., Thiemermann, C., Vane, J.R. ( 1995 ) The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure. Proc. Natl. Acad. Sci. USA 92, 10359 – 10363.en_US
dc.identifier.citedreference[87] Elsbach, P. and Weiss, J. (1992) Oxygen-independent antimicrobial systems. In: Inflammation, Basic Principles and Clinical Correlates, 2nd edn. (Gallin, J., Goldstein, M. and Snyderman, R., Eds.), pp. 603–636. Raven Press, New York.en_US
dc.identifier.citedreferenceGinsburg, I. ( 1988 ) The biochemistry of bacteriolysis: paradoxes, facts and myths. Microbiol. Sci. 5, 137 – 142.en_US
dc.identifier.citedreferenceGinsburg, I. ( 1987 ) Cationic polyelectolytes: A new look at their possible roles as opsonins, as stimulators of the respiratory burst in leukocytes, in bacteriolysis, and as modulators of immune-complex diseases. Inflammation 11, 489 – 515.en_US
dc.identifier.citedreferenceGinsburg, I. ( 1989 ) Cationic polyelectrolytes: potent opsonic agents which activate the respiratory burst in leukocytes. Free Radical Res. Commun. 8, 11 – 26.en_US
dc.identifier.citedreferenceHurley, J.C. ( 1992 ) Antibiotic-induced release of endotoxin: An appraisal. Clin. Infect. Dis. 15, 840 – 854.en_US
dc.identifier.citedreferenceHolzheimer, R.G. ( 1998 ) The significance of endotoxin release in experimental and clinical sepsis, in surgical patients-evidence for antibiotic-induced endotoxin release ?. Infection 26, 77 – 84.en_US
dc.identifier.citedreferenceShenep, J.L. ( 1986 ) Antibiotic-induced bacterial cell lysis: A therapeutic dilemma. Eur. J. Clin. Microbiol. 5, 11 – 12.en_US
dc.identifier.citedreferenceOseas, R.S., Allen, J., Yang, H.H., Baehner, R.L., Boxer, L.A. ( 1981 ) Rabbit cationic proteins enhances leukocyte adhesiveness. Immunology 33, 523 – 526.en_US
dc.identifier.citedreferenceWarren, J.S., Ward, P.A., Johnson, K.J., Ginsburg, I. ( 1987 ) Modulation of acute immune-complex-mediated tissue injury by the presence of polyionic substances. Am. J. Pathol. 128, 67 – 77.en_US
dc.identifier.citedreferenceGinsburg, I., Sela, M.N. ( 1976 ) The role of leukocyte and their hydrolases in the persistence, degradation, and transport of bacterial constituents in tissues: relation to chronic inflammatory processess in staphylococal, streptococcal, and mycobacterial infections and in chronic periodontal disease. Crit. Rev. Microbiol. 4, 249 – 322.en_US
dc.identifier.citedreference[97] Ginsburg, I., Zor, U. and Floman, Y. (1977) Experimental models of streptococcal arthritis: Pathogenetic role of streptoptococcal prducts and prostaglandins and their modification by anti-inflammatory agents. In: Bayer Symposium VI. Experimental Models of Chronic Inflammatory Diseases (Glynn, L.E. and Schlumberger. H.G., Eds.), pp. 256–299. Springer Verlag, Berlin.en_US
dc.identifier.citedreferenceGinsburg, I. ( 1979 ) The role of lysosomal factors of leukocytes in the biodegradation and storage of microbial constituents in infectious granulomas. Front. Biol. 48, 327 – 406.en_US
dc.identifier.citedreferenceGinsburg, I. ( 1980 ) Streptococcal and staphylococcal arthritis: can chronic arthritis in the human be caused by highly chemotactic degradation products generated from bacteria by leukocyte enzymes and by activation of leukocytes by inflammatory exudates, polyelectolytes, leukocyte hydrolases, and bacteriolytic reactions in inflammatory sites ?. Agents Actions 7 ( Suppl. ), 260 – 270.en_US
dc.identifier.citedreferenceSchwab, J.H., Cromartie, W.J., Ohanian, S.H., Craddock, J.E. ( 1967 ) Association of experimental chronic arthritis with then persitence of group A streptococcal cell-walls in the articular tissue. J. Bacteriol. 94, 1728 – 1835.en_US
dc.identifier.citedreferenceOhanian, S.H., Schwab, J.H., Cromartie, W.J. ( 1969 ) Relation to rheumatic-like lesions of the mouse to localization of group A streptococcal cell walls. J. Exp. Med. 129, 37 – 49.en_US
dc.identifier.citedreferenceWecke, J., Giesbrecht, P. ( 1988 ) Wall degradation of antibiotic-pretreated staphylococci within macrophages. Acta Pediat. Hung. 29, 159 – 161.en_US
dc.identifier.citedreferenceGinsburg, I. ( 1988 ) Bacteriolysis is inhibited by hydrogen peroxide and proteases. Agents Actions 28, 238 – 242.en_US
dc.identifier.citedreferenceWecke, J., Lahav, M., Ginsburg, I., Kwa, E., Giesbrecht, P. ( 1986 ) Inhibition of cell wall autoysis of staphylococci by sodium polyanethole sulfonate ‘liquoid’. Arch. Microbiol. 144, 110 – 115.en_US
dc.identifier.citedreferenceGinsburg, I., Lahav, M., Sadovnik, M., Goultchin, J., Wecke, J., Giesbrecht, P. ( 1985 ) Persistence of staphylocccal cell-wall components in inflammatory sites may be due to the modulation by sulfated polyelectolytes of autolytic wall enzymes: a working hypothesis. Int. J. Tissue React. 7, 255 – 261.en_US
dc.identifier.citedreferenceWecke, J., Kwa, E., Lahav, M., Ginsburg, I. ( 1987 ) Suppression of penicillin-induced bacteriolysis of staphylococci by some anticoagulants. J. Antimicrob. Chemother. 20, 47 – 55.en_US
dc.identifier.citedreferenceWecke, J., Franz, M., Giesbrecht, P. ( 1990 ) Inhibition of the bacteriolytic effect of beta-lactam antibiotics on Staphylococcus aureus by the polyanionc drugs suramine and Evans blue. APMIS 98, 71 – 81.en_US
dc.identifier.citedreferenceKiriyama, T., Mityake, Y., Kobayshi, K., Yoshiga, K., Takada, K., Suginaka, H. ( 1987 ) Effects of mucopolysaccharide on penicillin-induced lysis of Staphylococcus aureus. J. Med. Microbiol. 24, 325 – 331.en_US
dc.identifier.citedreferenceChedid, L., Paranat, F., Paranat, P., Lafrancier, P., Choay, J., Lederer, E. ( 1977 ) Enhancement of non-sepecific immunity to Klebsiella pneumoniae infection by a synthetic immunoadjuvant ( N -acetylmuramyl-l-alanyl d-isoglutamine) and several analogs. Proc. Natl. Acad. Sci. USA 74, 2089 – 2093.en_US
dc.identifier.citedreferenceParant, M.A., Parant, F.J., Contel, C., Lefrancier, P., Chedid, L. ( 1992 ) MDP derivatives and resistance to bacterial infections in mice. Adv. Exp. Med. Biol. 319, 175 – 184.en_US
dc.identifier.citedreferenceBonavida, B., Jewett, A. ( 1989 ) Activation of human peripheral blood-derived monocytes by OK-432 ( Streptococcus pyogenes): Augmented cytotoxicity and secretion of TNF and synergy with rINF-Α. Cell. Immunol. 123, 373 – 383.en_US
dc.identifier.citedreferenceHolst, O., Ulmer, A.J., Flad, H.D., Rietschel, T.T. ( 1996 ) Biochemistry and cell biology of bacterial endotoxins. FEMS Immunol. Microbiol. 16, 83 – 104.en_US
dc.identifier.citedreferenceWatson, E.W.G., Redmond, H.P., Bouchier-Hayes, D. ( 1994 ) Role of endotoxin in mononuclear phagocyte-mediated inflammatory responses. J. Leukocyte Biol. 56, 95 – 103.en_US
dc.identifier.citedreferenceForehand, J.R., Pabst, M.J., Phillips, W.A., Johnston, R.B. ( 1989 ) Mechanisms of lipopolysaccharide priming of human neutrophils for an enhanced respiratoryburst: role of intracellular calcium. J. Clin. Invest. 83, 74 – 83.en_US
dc.identifier.citedreference[115] Ferrante, A., Kowanko, I.C. and Bates, E.J. (1992) Mechanisms of host tissue damage by cytokine-activated neutrophils. In: Granulocyte Responses to Cytokines. Basic Clinical Research (Coffey, R.G., Ed.), pp. 499–521. Marcel Dekker, New York.en_US
dc.identifier.citedreferenceBaue, A.E. ( 1992 ) The horror autotoxicus and multiple-organ failure. Arch. Surg. 127, 1451 – 1461.en_US
dc.identifier.citedreferenceEidelman, L.A., Sprung, C.L. ( 1994 ) Why have new effective therapies for sepsis not been developed ?. Crit. Care Med. 22, 1330 – 1334.en_US
dc.identifier.citedreferenceFurie, B., Randolph, G.J. ( 1995 ) Chemokines and tissue injury. Am. J. Pathol. 146, 1287 – 1301.en_US
dc.identifier.citedreferencePulsa, S.M. ( 1996 ) Sepsis and host response. Curr. Opin. Surg. Infect. 4, 87 – 93.en_US
dc.identifier.citedreferenceLuckacs, N.W., Ward, P.A. ( 1996 ) Inflammatory mediators cytokines, adhesion molecules in pulmonary inflammation and injury. Adv. Immunol. 62, 257 – 304.en_US
dc.identifier.citedreferenceWheeler, A.P., Bernard, G.R. ( 1996 ) Application of molecular biology and biotechnology: antibody therapy of sepsis. J. Crit. Care 11, 77 – 94.en_US
dc.identifier.citedreferenceRotstein, O.D. ( 1996 ) Prevention of endotoxin-induced mortality by anti tissue factor immunization. Arch. Surg. 131, 1273 – 1279.en_US
dc.identifier.citedreferenceHorn, D.L., Opal, S.M., Lomastro, E. ( 1996 ) Antibiotics, cytokines, and endotoxin: a complex and evolved relationship in Gram-negative sepsis. Scand. J. Infect. Dis. 1 ( Suppl. ), 10119 – 13128.en_US
dc.identifier.citedreference124 Editorial ( 1997 ) Anti-inflammatory therapies to treat sepsis and septic shock; A reassessment. Crit. Care Med. 25, 1095 – 1100.en_US
dc.identifier.citedreferenceHack, C.E., Aaarden, L.A., Thijt, L.G. ( 1997 ) Role of cytokines in sepsis. Adv. Immunol. 66, 101 – 195.en_US
dc.identifier.citedreferenceNasraway, S.A. Jr. ( 1999 ) Sepsis research; We must change course. Crit. Care J. 27, 427 – 430.en_US
dc.identifier.citedreferenceLiu, M., Slutzki, A.S. ( 1997 ) Anti-inflammatory therapies: application of molecular biology techniques in intensive care medicine. Intens. Care Med. 23, 718 – 731.en_US
dc.identifier.citedreferenceBaue, A.E. ( 1997 ) Multiple organ failure, multiple organ disfunction syndrome, and systemic inflammatory response-syndrome. Why no macic bullets ?. Arch. Surg. 132, 703 – 707.en_US
dc.identifier.citedreferenceArend, W.P., Malyak, M., Guthridge, C.J., Gabay, C. ( 1998 ) Interleukin-1 receptor antagonist: role in biology. Annu. Rev. Immunol. 16, 27 – 55.en_US
dc.identifier.citedreferenceBaue, A.E., Durham, R., Faist, E. ( 1998 ) Systemic inflammatory response syndrome (SIRS), multiple organ disfunction syndrome (MODS), multiple organ failure (MOF): are we winning the battle ?. Shock 10, 79 – 89.en_US
dc.identifier.citedreferenceOpal, S.M. Yu, R.L. Jr. ( 1998 ) Antiendotoxin strategies for the prevention and treatment of septic shock. New approaches and future directions. Drugs 55, 497 – 508.en_US
dc.identifier.citedreference[132] Ginsburg, I. (1999) Is tissue injury in infectious and post-infectious and inflammatory processes the end result of a synergistic ‘cross-talk’ among microbial and host-derived agonists? Facts, paradoxes and myths (a review-hypothesis). (Submitted).en_US
dc.identifier.citedreferenceSchluger, N.W., Rom, W.N. ( 1997 ) Early response to infection: chemokines as mediators of inflammation. Curr. Opin. Immunol. 9, 504 – 508.en_US
dc.identifier.citedreferenceOpal, S.M., Cross, A.A., Jhung, J.W., Young, L.D., Palardy, J.E., Parejo, N.A., Donsky, C. ( 1996 ) Potential hazards of combined immunotherapy in the treatment of experimental septic shock. J. Infect. Dis. 173, 1415 – 1421.en_US
dc.identifier.citedreferenceQuirk, W.F. Jr. Sternbach, G. ( 1996 ) Joseph Jones: infection with flesh eating bacteria. J. Emerg. Med. 114, 747 – 753.en_US
dc.identifier.citedreferenceStevens, D.L. ( 1995 ) Streptococcal toxic-shock syndrome: spectrum of diseases, pathogensis and new concepts of treatment. Emerg. Infect. Dis. 1, 69 – 78.en_US
dc.identifier.citedreferenceSeller, B.J., Woods, M.L., Morris, S.E., Saffle, J.R. ( 1996 ) Necrotizing group A streptococcal infections associated with streptococcal toxic shock syndrome. Am. J. Surg. 172, 523 – 527.en_US
dc.identifier.citedreferenceFriedman, C.A., Robbins, K.K., Temple, D.M., Miller, C.J., Rawson, J.E. ( 1996 ) Survival and neutrophil kinetics in infants with severe group B streptococcal disease treated with gamma globulin. J. Perinatol. 16, 439 – 442.en_US
dc.identifier.citedreferenceVincent, J.L. ( 1997 ) Clinical trials in sepsis: Where do we stand ?. J. Crit. Care 12, 3 – 6.en_US
dc.identifier.citedreferenceStevens, D.L. ( 1998 ) Rationale for the use of intravenous gamma globulin in the treatment of streptococcal toxic shock syndrome. Clin. Infect. Dis. 26, 639 – 641.en_US
dc.identifier.citedreferenceNovogrodsky, A., Vanickin, A., Patya, M., Gazit, A., Osherov, N., Levitzki, A. ( 1994 ) Prevention of lipopolysaccharide-induced lethal toxicity by tyrosine kinase inhibitors. Science 264, 1319 – 1322.en_US
dc.identifier.citedreferenceServansky, J.E., Shaked, G., Novogrodzki, A., Levitzki, A. ( 1997 ) Tyrosine AG 556 improves susrvival and reduces multiorgan failure in canine Escherichia coli peritonitis. J. Clin. Invest. 99, 1966 – 1973.en_US
dc.identifier.citedreferenceGallili, R., Yamin, A., Waksmann, Y., Ovadia, H., Weidenfeld, J., Bar, J., Biegon, A., Mechoulam, R. ( 1997 ) Protection against septic shock and suppression of tumor necrosis factor and nitric oxide by dexabinol (HU-211) a non psychotropic cannabinoid. J. Pharmacol. Exp. Ther. 283, 918 – 924.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.