Show simple item record

Cholecystokinin Activates a Variety of Intracellular Signal Transduction Mechanisms in Rodent Pancreatic Acinar Cells

dc.contributor.authorWilliams, John A.en_US
dc.contributor.authorDolors Sans, M.en_US
dc.contributor.authorTashiro, Mitsuoen_US
dc.contributor.authorSchäfer, Clausen_US
dc.contributor.authorBragado, M. Juliaen_US
dc.contributor.authorDabrowski, Andrzejen_US
dc.date.accessioned2010-06-01T19:25:16Z
dc.date.available2010-06-01T19:25:16Z
dc.date.issued2002-12en_US
dc.identifier.citationWilliams, John A.; Dolors Sans, M.; Tashiro, Mitsuo; SchÄfer, Claus; Bragado, M. Julia; Dabrowski, Andrzej (2002). "Cholecystokinin Activates a Variety of Intracellular Signal Transduction Mechanisms in Rodent Pancreatic Acinar Cells." Pharmacology & Toxicology 91(6): 297-303. <http://hdl.handle.net/2027.42/72562>en_US
dc.identifier.issn0901-9928en_US
dc.identifier.issn1600-0773en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72562
dc.description.abstractCholecystokinin (CCK) acting through its G protein-coupled receptor is now known to activate a variety of intracellular signaling mechanisms and thereby regulate a complex array of cellular functions in pancreatic acinar cells. The best studied mechanism is the coupling through heterotrimeric G proteins of the G q family to activate a phospholipase C leading to an increase in inositol trisphosphate and release of intracellular Ca 2+ . This pathway along with protein kinase C activation in response to the increase in diacylglycerol stimulates the secretion of digestive enzymes by the process of exocytosis. CCK also activates signaling pathways in acini more related to other processes. The three mitogen activated protein kinase cascades leading to ERKs, JNKs and p38 MAPK are all activated by CCK. CCK activates the ERK cascade by PKC activation of Raf which in turn activates MEK and ERKs. JNKs are activated by a distinct mechanism whish requires higher concentrations of CCK. Both ERKs and JNKs are presumed to regulate gene expression. CCK activation of p38 MAPK also plays a role in regulating the actin cytoskeleton through phosphorylation of the small heat shock protein HSP27. The PI3K-PKB-mTOR pathway is activated by CCK and plays a major role in regulating protein synthesis at the translational level. This includes both activation of p70 S6K leading to phosphorylation of ribosomal protein S6 and the phosphorylation of the binding protein for initiation factor 4E leading to formation of the mRNA cap binding complex. Other signaling pathways activated by CCK receptors include NF-κB and a variety of tyrosine kinases. Further work is needed to understand how CCK receptors activate most of the above pathways and to better understand the biological events regulated by these diverse signaling pathways.en_US
dc.format.extent164495 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMunksgaard International Publishersen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rights© Pharmacology & Toxicology 2002en_US
dc.titleCholecystokinin Activates a Variety of Intracellular Signal Transduction Mechanisms in Rodent Pancreatic Acinar Cellsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid12688372en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72562/1/j.1600-0773.2002.910606.x.pdf
dc.identifier.doi10.1034/j.1600-0773.2002.910606.xen_US
dc.identifier.sourcePharmacology & Toxicologyen_US
dc.identifier.citedreferenceBragado, M. J., A. Dabrowski, G. E. Groblewski & J. A. Williams: CCK activates p90 rsk in rat pancreatic acini through protein kinase C. Amer. J. Physiol. 1997, 272, G401 – G407.en_US
dc.identifier.citedreferenceBragado, M. J., G. E. Groblewski & J. A. Williams: p70 s6k is activated by CCK in rat pancreatic acini. Amer. J. Physiol. 1997, 273, C101 – C109.en_US
dc.identifier.citedreferenceBragado, M. J., G. E. Groblewski & J. A. Williams: Regulation of protein synthesis by cholecystokinin in rat pancreatic acini involves PHAS-1 and the p70 S6 kinase pathway. Gastroenterology 1998, 115, 733 – 742.en_US
dc.identifier.citedreferenceBragado, M. J., M. Tashiro & J. A. Williams: Regulation of the initiation of pancreatic digestive enzyme protein synthesis by cholecystokinin in rat pancreas in vivo. Gastroenterology 2000, 119, 1731 – 1739.en_US
dc.identifier.citedreferenceCantrell, D. A.: Phosphoinositide 3-kinase signaling pathways. J. Cell Sci. 2001, 114, 1439 – 1445.en_US
dc.identifier.citedreferenceChen, X., J. A. S. Edwards, C. D. Logsdon, S. A. Ernst & J. A. Williams: Dominant negative Rab3D inhibits amylase release from mouse pancreatic acini. J. Biol. Chem. 2002, 277, 18002 – 18009.en_US
dc.identifier.citedreferenceDabrowski, A., G. E. Groblewski, C. SchÄfer, K.-L. Guan & J. A. Williams: Cholecystokinin and EGF activate a MAPK cascade by different mechanisms in rat pancreatic acinar cells. Amer. J. Physiol. 1997a, 273, C1472 – C1479.en_US
dc.identifier.citedreferenceDabrowski, A., K. M. Detjen, C. D. Logsdon & J. A. Williams: Stimulation of both CCK-A and CCK-B receptors activates MAP kinases in AR42J and receptor-transfected CHO cells. Digestion 1997b, 58, 361 – 367.en_US
dc.identifier.citedreferenceDabrowski, A., J. A. VanderKuur, C. Carter-Su & J. A. Williams: Cholecystokinin stimulates formation of Shc-Grb2 complex in rat pancreatic acinar cells through a protein kinase C-dependent mechanism. J. Biol. Chem. 1996a, 271, 27125 – 27129.en_US
dc.identifier.citedreferenceDabrowski, A., T. Grady, C. D. Logsdon & J. A. Williams: Jun kinases are rapidly activated by cholecystokinin in rat pancreas both in vitro and in vivo. J. Biol. Chem. 1996b, 271, 5686 – 5690.en_US
dc.identifier.citedreferenceDuan, R.-D. & J. A. Williams: Cholecystokinin rapidly activates mitogen-activated protein kinase in rat pancreatic acini. Amer. J. Physiol. 1994, 267, G404 – G408.en_US
dc.identifier.citedreferenceDuan, R.-D., C.-F. Zheng, K.-L. Guan & J. A. Williams: Activation of MAP kinase kinase (MEK) and Ras by cholecystokinin in rat pancreatic acini. Amer. J. Physiol. 1995, 268, G1060 – G1065.en_US
dc.identifier.citedreferenceEnslen, H., J. Raingeaud & R. J. Davis: Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J. Biol. Chem. 1998, 273, 1741 – 1748.en_US
dc.identifier.citedreferenceGroblewski, G. E., T. Grady, N. Mehta, H. Lambert, C. D. Logsdon, J. Landry & J. A. Williams: Cholecystokinin stimulates heat shock protein 27 phosphorylation in rat pancreas both in vivo and in vitro. Gastroenterology 1997, 112, 1354 – 1361.en_US
dc.identifier.citedreferenceHan, B. & C. D. Logsdon: CCK stimulates mob-1 expression and NF-κB activation via protein kinase C and intracellular Ca 2+. Amer. J. Physiol. 2000, 278, C344 – C351.en_US
dc.identifier.citedreferenceHershey, J. W. & W. C. Merrick: Pathway and mechanism of initiation of protein synthesis. In: Translational control of gene expression. Ed.: M. Matthews. Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press, 2000, pp. 33 – 88.en_US
dc.identifier.citedreferenceKarin, M.: Mitogen-activated protein kinase cascades as regulators of stress responses. Ann. N.Y. Acad. Sci. 1998, 851, 139 – 146 (Review).en_US
dc.identifier.citedreferenceLiddle, R. A., I. D. Goldfine & J. A. Williams: Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol. Gastroenterology 1984, 87, 542 – 549.en_US
dc.identifier.citedreferenceMatozaki, T. & J. A. Williams: Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. J. Biol. Chem. 1989, 264, 14729 – 14734.en_US
dc.identifier.citedreferenceNicke, B., M. J. Tseng, M. Fenrich & C. D. Logsdon: Adenovirus-mediates gene transfer of RasN17 inhibits specific CCK actions on pancreatic acinar cells. Amer. J. Physiol. 1999, 276, G499 – G506.en_US
dc.identifier.citedreferencePetersen, O. H., D. Burdakov & A. V. Tepikin: Polarity in intracellular calcium signaling. BioEssays 1999, 21, 851 – 860.en_US
dc.identifier.citedreferenceProud, C. G. & R. M. Denton: Molecular mechanisms for the control of translation by insulin. Biochem J. 1997, 328, 329 – 341.en_US
dc.identifier.citedreferencePyronnet, S., A.-C. Gingras, M. Bouisson, A. Kowalski-Chauvel & C. Seva: Gastrin induces phosphorylation of eIF4E binding protein 1 and translation initiation of ornithine decarboxylase mRNA. Oncogene 2000, 16, 2219 – 2227.en_US
dc.identifier.citedreferenceSchÄfer, C. & J. A. Williams: Stress kinases and heat shock proteins in the pancreas: possible roles in normal function and disease. J. Gastroenterol. 2000, 35, 1 – 9.en_US
dc.identifier.citedreferenceSchÄfer, C., P. Clapp, M. J. Welsh, R. Benndorf & J. A. Williams: HSP27 expression regulates CCK-induced changes of the actin cytoskeleton in CHO-CCK-A cells. Amer. J. Physiol. 1999, 277, C1032 – C1043.en_US
dc.identifier.citedreferenceSchÄfer, C., S. E. Ross, M. J. Bragado, G. E. Groblewski, S. A. Ernst & J. A. Williams: A role for the p38 mitogen-activated protein kinase/Hsp 27 pathway in cholecystokinin-induced changes in the actin cytoskeleton in rat pancreatic acini. J. Biol. Chem. 1998, 273, 24173 – 24180.en_US
dc.identifier.citedreferenceSeva, C., A. Kowalski-Chauvel, L. Daulhac, C. Barthez, N. Vaysse & L. Pradayrol: Wortmannin-sensitive activation of p70S6-kinase and MAP-Kinase by the G protein-coupled receptor, G/CCK B. Biochem. Biophys. Res. Commun. 1997, 238, 202 – 206.en_US
dc.identifier.citedreferenceTando, Y., H. Algul, M. Wagner, H. Weidenbach & G. Adler: Caerulein-induced NF-κB/Rel activation requires both Ca 2+ and protein kinase C as messengers. Amer. J. Physiol. 1999, 277, G678 – G686.en_US
dc.identifier.citedreferenceTodisco, A., S. Ramamoorthy, T. Withan, N. Pausawasdi, S. Srinivasan, C. J. Dickinson, F. K. Askara & D. Krametter: Molecular mechanisms for the antiapoptotic action of gastrin. Amer. J. Physiol. 2001, 280, G298 – G307.en_US
dc.identifier.citedreferenceVanhaesebroeck, B. & D. R. Alessi: The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 2000, 346, 561 – 576.en_US
dc.identifier.citedreferenceWagner, A. C. C., L. Mazzucchelli, M. Miller, A. M. Camoratto & B. GÖke: CEP-1347 inhibits caerulein-induced rat pancreatic JNK activation and ameliorates caerulein pancreatitis. Amer. J. Physiol. 2000, 278, G165 – G172.en_US
dc.identifier.citedreferenceWidmann, C., S. Gibson, M. B. Jarpe & G. L. Johnson: Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 1999, 79, 143 – 180.en_US
dc.identifier.citedreferenceWilliams, J. A., M. Korc & R. L. Dormer: Action of secretagogues on a new preparation of functionally intact, isolated pancreatic acini. Amer. J. Physiol. 1978, 235, E517 – E524.en_US
dc.identifier.citedreferenceWilliams, J. A.: Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu. Rev. Physiol. 2001, 63, 77 – 97.en_US
dc.identifier.citedreferenceWilliams, J. A.: Receptor biology and intracellular regulatory mechanisms in pancreatic acinar cells. Current Opinion Gastroenterol. 2002, 18, 529 – 535.en_US
dc.identifier.citedreferenceWilliams, J. A. & G. T. Blevins: Cholecystokinin and regulation of pancreatic acinar cell function. Physiol. Rev. 1993, 73, 701 – 721.en_US
dc.identifier.citedreferenceYule, D. I. & J. A. Williams: Stimulus-secretion coupling in the pancreatic acinus. In: Physiology of the gastrointestinal tract, 3rd Edition. Ed.: L. R. Johnson. Raven Press, New York, 1994, pp. 1447 – 1472.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.