Cholecystokinin Activates a Variety of Intracellular Signal Transduction Mechanisms in Rodent Pancreatic Acinar Cells
dc.contributor.author | Williams, John A. | en_US |
dc.contributor.author | Dolors Sans, M. | en_US |
dc.contributor.author | Tashiro, Mitsuo | en_US |
dc.contributor.author | Schäfer, Claus | en_US |
dc.contributor.author | Bragado, M. Julia | en_US |
dc.contributor.author | Dabrowski, Andrzej | en_US |
dc.date.accessioned | 2010-06-01T19:25:16Z | |
dc.date.available | 2010-06-01T19:25:16Z | |
dc.date.issued | 2002-12 | en_US |
dc.identifier.citation | Williams, John A.; Dolors Sans, M.; Tashiro, Mitsuo; SchÄfer, Claus; Bragado, M. Julia; Dabrowski, Andrzej (2002). "Cholecystokinin Activates a Variety of Intracellular Signal Transduction Mechanisms in Rodent Pancreatic Acinar Cells." Pharmacology & Toxicology 91(6): 297-303. <http://hdl.handle.net/2027.42/72562> | en_US |
dc.identifier.issn | 0901-9928 | en_US |
dc.identifier.issn | 1600-0773 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/72562 | |
dc.description.abstract | Cholecystokinin (CCK) acting through its G protein-coupled receptor is now known to activate a variety of intracellular signaling mechanisms and thereby regulate a complex array of cellular functions in pancreatic acinar cells. The best studied mechanism is the coupling through heterotrimeric G proteins of the G q family to activate a phospholipase C leading to an increase in inositol trisphosphate and release of intracellular Ca 2+ . This pathway along with protein kinase C activation in response to the increase in diacylglycerol stimulates the secretion of digestive enzymes by the process of exocytosis. CCK also activates signaling pathways in acini more related to other processes. The three mitogen activated protein kinase cascades leading to ERKs, JNKs and p38 MAPK are all activated by CCK. CCK activates the ERK cascade by PKC activation of Raf which in turn activates MEK and ERKs. JNKs are activated by a distinct mechanism whish requires higher concentrations of CCK. Both ERKs and JNKs are presumed to regulate gene expression. CCK activation of p38 MAPK also plays a role in regulating the actin cytoskeleton through phosphorylation of the small heat shock protein HSP27. The PI3K-PKB-mTOR pathway is activated by CCK and plays a major role in regulating protein synthesis at the translational level. This includes both activation of p70 S6K leading to phosphorylation of ribosomal protein S6 and the phosphorylation of the binding protein for initiation factor 4E leading to formation of the mRNA cap binding complex. Other signaling pathways activated by CCK receptors include NF-κB and a variety of tyrosine kinases. Further work is needed to understand how CCK receptors activate most of the above pathways and to better understand the biological events regulated by these diverse signaling pathways. | en_US |
dc.format.extent | 164495 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Munksgaard International Publishers | en_US |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.rights | © Pharmacology & Toxicology 2002 | en_US |
dc.title | Cholecystokinin Activates a Variety of Intracellular Signal Transduction Mechanisms in Rodent Pancreatic Acinar Cells | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Pharmacy and Pharmacology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.identifier.pmid | 12688372 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/72562/1/j.1600-0773.2002.910606.x.pdf | |
dc.identifier.doi | 10.1034/j.1600-0773.2002.910606.x | en_US |
dc.identifier.source | Pharmacology & Toxicology | en_US |
dc.identifier.citedreference | Bragado, M. J., A. Dabrowski, G. E. Groblewski & J. A. Williams: CCK activates p90 rsk in rat pancreatic acini through protein kinase C. Amer. J. Physiol. 1997, 272, G401 – G407. | en_US |
dc.identifier.citedreference | Bragado, M. J., G. E. Groblewski & J. A. Williams: p70 s6k is activated by CCK in rat pancreatic acini. Amer. J. Physiol. 1997, 273, C101 – C109. | en_US |
dc.identifier.citedreference | Bragado, M. J., G. E. Groblewski & J. A. Williams: Regulation of protein synthesis by cholecystokinin in rat pancreatic acini involves PHAS-1 and the p70 S6 kinase pathway. Gastroenterology 1998, 115, 733 – 742. | en_US |
dc.identifier.citedreference | Bragado, M. J., M. Tashiro & J. A. Williams: Regulation of the initiation of pancreatic digestive enzyme protein synthesis by cholecystokinin in rat pancreas in vivo. Gastroenterology 2000, 119, 1731 – 1739. | en_US |
dc.identifier.citedreference | Cantrell, D. A.: Phosphoinositide 3-kinase signaling pathways. J. Cell Sci. 2001, 114, 1439 – 1445. | en_US |
dc.identifier.citedreference | Chen, X., J. A. S. Edwards, C. D. Logsdon, S. A. Ernst & J. A. Williams: Dominant negative Rab3D inhibits amylase release from mouse pancreatic acini. J. Biol. Chem. 2002, 277, 18002 – 18009. | en_US |
dc.identifier.citedreference | Dabrowski, A., G. E. Groblewski, C. SchÄfer, K.-L. Guan & J. A. Williams: Cholecystokinin and EGF activate a MAPK cascade by different mechanisms in rat pancreatic acinar cells. Amer. J. Physiol. 1997a, 273, C1472 – C1479. | en_US |
dc.identifier.citedreference | Dabrowski, A., K. M. Detjen, C. D. Logsdon & J. A. Williams: Stimulation of both CCK-A and CCK-B receptors activates MAP kinases in AR42J and receptor-transfected CHO cells. Digestion 1997b, 58, 361 – 367. | en_US |
dc.identifier.citedreference | Dabrowski, A., J. A. VanderKuur, C. Carter-Su & J. A. Williams: Cholecystokinin stimulates formation of Shc-Grb2 complex in rat pancreatic acinar cells through a protein kinase C-dependent mechanism. J. Biol. Chem. 1996a, 271, 27125 – 27129. | en_US |
dc.identifier.citedreference | Dabrowski, A., T. Grady, C. D. Logsdon & J. A. Williams: Jun kinases are rapidly activated by cholecystokinin in rat pancreas both in vitro and in vivo. J. Biol. Chem. 1996b, 271, 5686 – 5690. | en_US |
dc.identifier.citedreference | Duan, R.-D. & J. A. Williams: Cholecystokinin rapidly activates mitogen-activated protein kinase in rat pancreatic acini. Amer. J. Physiol. 1994, 267, G404 – G408. | en_US |
dc.identifier.citedreference | Duan, R.-D., C.-F. Zheng, K.-L. Guan & J. A. Williams: Activation of MAP kinase kinase (MEK) and Ras by cholecystokinin in rat pancreatic acini. Amer. J. Physiol. 1995, 268, G1060 – G1065. | en_US |
dc.identifier.citedreference | Enslen, H., J. Raingeaud & R. J. Davis: Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J. Biol. Chem. 1998, 273, 1741 – 1748. | en_US |
dc.identifier.citedreference | Groblewski, G. E., T. Grady, N. Mehta, H. Lambert, C. D. Logsdon, J. Landry & J. A. Williams: Cholecystokinin stimulates heat shock protein 27 phosphorylation in rat pancreas both in vivo and in vitro. Gastroenterology 1997, 112, 1354 – 1361. | en_US |
dc.identifier.citedreference | Han, B. & C. D. Logsdon: CCK stimulates mob-1 expression and NF-κB activation via protein kinase C and intracellular Ca 2+. Amer. J. Physiol. 2000, 278, C344 – C351. | en_US |
dc.identifier.citedreference | Hershey, J. W. & W. C. Merrick: Pathway and mechanism of initiation of protein synthesis. In: Translational control of gene expression. Ed.: M. Matthews. Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press, 2000, pp. 33 – 88. | en_US |
dc.identifier.citedreference | Karin, M.: Mitogen-activated protein kinase cascades as regulators of stress responses. Ann. N.Y. Acad. Sci. 1998, 851, 139 – 146 (Review). | en_US |
dc.identifier.citedreference | Liddle, R. A., I. D. Goldfine & J. A. Williams: Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol. Gastroenterology 1984, 87, 542 – 549. | en_US |
dc.identifier.citedreference | Matozaki, T. & J. A. Williams: Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. J. Biol. Chem. 1989, 264, 14729 – 14734. | en_US |
dc.identifier.citedreference | Nicke, B., M. J. Tseng, M. Fenrich & C. D. Logsdon: Adenovirus-mediates gene transfer of RasN17 inhibits specific CCK actions on pancreatic acinar cells. Amer. J. Physiol. 1999, 276, G499 – G506. | en_US |
dc.identifier.citedreference | Petersen, O. H., D. Burdakov & A. V. Tepikin: Polarity in intracellular calcium signaling. BioEssays 1999, 21, 851 – 860. | en_US |
dc.identifier.citedreference | Proud, C. G. & R. M. Denton: Molecular mechanisms for the control of translation by insulin. Biochem J. 1997, 328, 329 – 341. | en_US |
dc.identifier.citedreference | Pyronnet, S., A.-C. Gingras, M. Bouisson, A. Kowalski-Chauvel & C. Seva: Gastrin induces phosphorylation of eIF4E binding protein 1 and translation initiation of ornithine decarboxylase mRNA. Oncogene 2000, 16, 2219 – 2227. | en_US |
dc.identifier.citedreference | SchÄfer, C. & J. A. Williams: Stress kinases and heat shock proteins in the pancreas: possible roles in normal function and disease. J. Gastroenterol. 2000, 35, 1 – 9. | en_US |
dc.identifier.citedreference | SchÄfer, C., P. Clapp, M. J. Welsh, R. Benndorf & J. A. Williams: HSP27 expression regulates CCK-induced changes of the actin cytoskeleton in CHO-CCK-A cells. Amer. J. Physiol. 1999, 277, C1032 – C1043. | en_US |
dc.identifier.citedreference | SchÄfer, C., S. E. Ross, M. J. Bragado, G. E. Groblewski, S. A. Ernst & J. A. Williams: A role for the p38 mitogen-activated protein kinase/Hsp 27 pathway in cholecystokinin-induced changes in the actin cytoskeleton in rat pancreatic acini. J. Biol. Chem. 1998, 273, 24173 – 24180. | en_US |
dc.identifier.citedreference | Seva, C., A. Kowalski-Chauvel, L. Daulhac, C. Barthez, N. Vaysse & L. Pradayrol: Wortmannin-sensitive activation of p70S6-kinase and MAP-Kinase by the G protein-coupled receptor, G/CCK B. Biochem. Biophys. Res. Commun. 1997, 238, 202 – 206. | en_US |
dc.identifier.citedreference | Tando, Y., H. Algul, M. Wagner, H. Weidenbach & G. Adler: Caerulein-induced NF-κB/Rel activation requires both Ca 2+ and protein kinase C as messengers. Amer. J. Physiol. 1999, 277, G678 – G686. | en_US |
dc.identifier.citedreference | Todisco, A., S. Ramamoorthy, T. Withan, N. Pausawasdi, S. Srinivasan, C. J. Dickinson, F. K. Askara & D. Krametter: Molecular mechanisms for the antiapoptotic action of gastrin. Amer. J. Physiol. 2001, 280, G298 – G307. | en_US |
dc.identifier.citedreference | Vanhaesebroeck, B. & D. R. Alessi: The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 2000, 346, 561 – 576. | en_US |
dc.identifier.citedreference | Wagner, A. C. C., L. Mazzucchelli, M. Miller, A. M. Camoratto & B. GÖke: CEP-1347 inhibits caerulein-induced rat pancreatic JNK activation and ameliorates caerulein pancreatitis. Amer. J. Physiol. 2000, 278, G165 – G172. | en_US |
dc.identifier.citedreference | Widmann, C., S. Gibson, M. B. Jarpe & G. L. Johnson: Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 1999, 79, 143 – 180. | en_US |
dc.identifier.citedreference | Williams, J. A., M. Korc & R. L. Dormer: Action of secretagogues on a new preparation of functionally intact, isolated pancreatic acini. Amer. J. Physiol. 1978, 235, E517 – E524. | en_US |
dc.identifier.citedreference | Williams, J. A.: Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu. Rev. Physiol. 2001, 63, 77 – 97. | en_US |
dc.identifier.citedreference | Williams, J. A.: Receptor biology and intracellular regulatory mechanisms in pancreatic acinar cells. Current Opinion Gastroenterol. 2002, 18, 529 – 535. | en_US |
dc.identifier.citedreference | Williams, J. A. & G. T. Blevins: Cholecystokinin and regulation of pancreatic acinar cell function. Physiol. Rev. 1993, 73, 701 – 721. | en_US |
dc.identifier.citedreference | Yule, D. I. & J. A. Williams: Stimulus-secretion coupling in the pancreatic acinus. In: Physiology of the gastrointestinal tract, 3rd Edition. Ed.: L. R. Johnson. Raven Press, New York, 1994, pp. 1447 – 1472. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.