Show simple item record

Negative Feedback Regulation following Administration of Chronic Exogenous Corticosterone

dc.contributor.authorYoung, Elizabeth A.en_US
dc.contributor.authorKwak, Seung P.en_US
dc.contributor.authorKottak, Julieten_US
dc.date.accessioned2010-06-01T19:25:49Z
dc.date.available2010-06-01T19:25:49Z
dc.date.issued1995-01en_US
dc.identifier.citationYoung, Elizabeth A.; Kwak, Seung P.; Kottak, Juliet (1995). "Negative Feedback Regulation following Administration of Chronic Exogenous Corticosterone." Journal of Neuroendocrinology 7(1): 37-45. <http://hdl.handle.net/2027.42/72571>en_US
dc.identifier.issn0953-8194en_US
dc.identifier.issn1365-2826en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72571
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=7735296&dopt=citationen_US
dc.description.abstractAdministration of exogenous glucocorticoids is known to suppress the HPA axis and has been reported to occupy brain glucocorticoid receptors, eventually leading to down-regulation. To determine the effects of chronic corticosterone administration on HPA axis function, corticosterone was administered as both 25% and 50% corticosteronekholesterol pellets. Rats were sacrificed 6 days after corticosterone pellet implantation. The 25% corticosterone pellets produced a small increase in morning corticosterone concentrations but no change in evening ACTH or corticosterone secretion. The 50% corticosterone pellets produced constant corticosterone concentrations of 5–6 pg/dl, with no circadian variation in corticosterone, indicating inhibition of evening ACTH and corticosterone secretion. The 25% corticosterone pellets produced no significant decrease in thymus weight or in adrenal weight; 50% corticosterone pellets produced significant decreases in thymus weight and adrenal weight. Neither 25% nor 50% corticosterone pellets produced significant decreases in GR in hippocampus and cortex. The 50% corticosterone pellets treatment resulted in a decrease in anterior pituitary POMC mRNA levels, a decrease in baseline and oCRH stimulated ACTH release from the anterior pituitary, and a near complete inhibition of the AM and PM response to restraint stress. These results suggest that: 1) the HPA axis was able to adjust to the small increase in glucocorticoids produced by the 25% cort pellets with minimal disturbances in function and 2) 50% corticosterone pellets exert a significant inhibitory effect on stress and diurnal ACTH secretion which appears to be exerted at the pituitary as well as possible inhibitory effects on brain.en_US
dc.format.extent1054153 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1995 Oxford University Pressen_US
dc.titleNegative Feedback Regulation following Administration of Chronic Exogenous Corticosteroneen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMental Health Research Institute and Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA.en_US
dc.identifier.pmid7735296en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72571/1/j.1365-2826.1995.tb00665.x.pdf
dc.identifier.doi10.1111/j.1365-2826.1995.tb00665.xen_US
dc.identifier.sourceJournal of Neuroendocrinologyen_US
dc.identifier.citedreferenceKeller-Wood ME, Dallman MF. ( 1985 ). Corticosteroid inhibition of ACTH secretion. Endocrine Rev. 5: 1 – 24.en_US
dc.identifier.citedreferenceDallman MF, Akana SF, Cascio ES, Darlington DN, Jacobson L. Levin N. ( 1987 ). Regulation of ACTH secretion: Variations on a theme of B. Recent Prog in Horm Res. 43: 113 – 173.en_US
dc.identifier.citedreferenceKrieger DT. ( 1979 ). Rhythms in CRH, ACTH and corticosteroids Endocr Rev. 1: 23 – 30.en_US
dc.identifier.citedreferenceKovacs K, Makara GB. ( 1988 ). Corticosterone and dexamethasone act at different sites to inhibit adrenalectomy induced adrenocorticotropin hypersecretion. Brain Res. 474: 205 – 210.en_US
dc.identifier.citedreferenceMcEwen BS, Weiss JM, Schwartz LS. ( 1968 ). Selective retention of corticosterone by limbic structures in the rat brain Nature. 220: 911.en_US
dc.identifier.citedreferencede Kloet R, Wallach G, McEwen BS. ( 1975 ). Differences in corticosterone and dexamethasone binding to rat brain and pituitary. Endocrinology. 96: 598 – 605.en_US
dc.identifier.citedreferenceGallagher TF, Yoshida K, Roffwarg HD, Fukishima DK, Weitzman ED, Hellman L. ( 1973 ). ACTH and cortisol secretory patterns in man. J Clin Endocrin Metah. 36: 1058 – 1073.en_US
dc.identifier.citedreferenceRetiene K, Zimmerman E, Schindler WJ, Neuenschwander J. Lipscomb HS. ( 1968 ). A correlative study of endocrine rhythms in rats. Acta Endocrinol (Kbh). 57: 615 – 622.en_US
dc.identifier.citedreferenceGraber AL, Givens J, Nocholson W. Island DP, Liddle DW. ( 1965 ). Persistence of diurnal rhythmicity in plasma ACTH concentrations in cortisol deficient patients. J Clin Endocrinol Metab. 25: 804 – 807.en_US
dc.identifier.citedreferenceRubin RT, Poland RE, Lesser IM, Winston RA, Blodgett N. ( 1987 ). Neuroendocrine aspects of primary endogenous depression 1. Cortisol secretory dynamics in patients and matched controls Arch Gen Psychiatry. 44: 328 – 336.en_US
dc.identifier.citedreferenceHalbreich U, Asnis GM, Schindledecker R, Zurnoff B, Nathan RS. ( 1985 ). Cortisol secretion in endogenous depression I. Basal plasma levels. Arch Gen Psychiatry. 42: 909 – 914.en_US
dc.identifier.citedreferencePfohl B, Sherman B, Schiecter J. Stone R. ( 1985 ). Pituitary/adrenal axis rhythm disturbances in psychiatric patients. Arch Gen Psychiatry. 42: 897 – 903.en_US
dc.identifier.citedreferenceCarroll BJ, Curtis GC, Mendels J. ( 1976 ). Neuroendocrine regulation in depression I. Limbic system-adrenocortical dysfunction. Arch Gen Psychiatry. 33: 1039 – 1044.en_US
dc.identifier.citedreferenceSachar EJ, Hellman L, Roffwarg HP, Halpern FS, Fukush DK. Gallagher TF. ( 1973 ). Disrupted 24 hour patterns of cortisol secretion in psychotic depressives. Arch Gen Psychiatry. 28: 19 – 24.en_US
dc.identifier.citedreferenceSpencer RL, Young EA, Choo PH, McEwen BS. ( 1990 ). Glucocorticoid Type 1 and Type 11 receptor binding: estimates of in vivo receptor number, occupancy and activation with varying levels of steroid. Brain Research. 514: 37 – 48.en_US
dc.identifier.citedreferenceMeancy MJ. Viau V, Aitken DH, Bhatnagar S. ( 1988 ). Stress-induced occupancy and translocation of hippocampal glucocorticoid receptors. Brain Res. 44: 198 – 203.en_US
dc.identifier.citedreferenceMiller AH, Spencer RL, Pulera M, Kang S. McEwen BS, Stein M. ( 1993 ). Adrenal steroid receptor activation in rat brain and pituitary following dexamethasone: implications for the dexamethasone suppression test. Biol Psychiatry. 32: 850 – 869.en_US
dc.identifier.citedreferenceSpencer RL, Miller AH, Moday H, Stein M, McEwen BS. ( 1993 ). Diurnal differences in basal and acute stress levels of Type I and Type I1 adrenal steroid receptor activation in neural and immune tissues. Endocrinology. 133: 1941 – 1950.en_US
dc.identifier.citedreferenceKwak SP, Young EA, Morano IM, Watson SJ, Akil H. ( 1992 ). Diurnal corticotropin-releasing hormone messenger ribonucleic acid variation in the paraventricular nucleus exhibits a rhythm distinct from that of plasma corticosterone. Neuroendocrinology. 55: 74 – 83.en_US
dc.identifier.citedreferencePatel PD, Kwak SP, Herman JP, Young EA, Akil H, Watson SJ. ( 1991 ). Functional heterogeneity of type I and type I1 corticosteroid receptor expression in rat hippocampus. Proc Internat Symp Stress Reproduc. ( in press ).en_US
dc.identifier.citedreferenceReul JMH, de Kloet ER. ( 1985 ). Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology. 117: 2505 – 2511.en_US
dc.identifier.citedreferenceReul JMH. van den Boscb FR. de Kloet ER. ( 1987 ). Relative occupation of type-I and type-I1 corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. J Endocrinol. 115: 459 – 467.en_US
dc.identifier.citedreferenceHerman JP, Patel PD, Akil H, Watson SJ. ( 1989 ). Localization and regulation of glucocorticoid and minerolcorticoid receptor mRNAs in the hippocampal formation of the rat. Mol Endocrinol. 3: 1886 – 1894.en_US
dc.identifier.citedreferenceReul JMH, Pearce PT, Funder JW, Krozowski ZS. ( 1989 ). Type I and Type I1 corticosteroid receptor gene expression in the rat: effects of adrenalectomy and dexamethasone administration. Molec Endocrinol. 3: 1674 – 1680.en_US
dc.identifier.citedreferenceReul JHM, van den Bosch FR, de Kloet ER. ( 1987 ). Differential response of Type I and Type I1 corticosteroid receptors to changes in plasma steroid levels and circadian rhythmicity. Neuroendocrinology. 45: 407 – 411.en_US
dc.identifier.citedreferenceSapolsky RM, Krey LC, McEwen BS. ( 1984 ). Stress down-regulates glucocorticoid receptors in a site-specific manner. Endocrinology. 114: 287 – 292.en_US
dc.identifier.citedreferenceSawchenko PE. ( 1987 ). Adrenalectomy-induced enhancement of CRf and vasopressin immunoreactivity in parvocellular neurosecretory neurons: anatomic, peptide and steroid specificity. J Neurosci. 7: 1093 – 1106.en_US
dc.identifier.citedreferenceAkana SF, Scribner KA, Bradbury MJ, Strack AM, Walker CD, Dallman MF. ( 1992 ). Feedback sensitivity of the rat hypothalamopituitary-adrenal axis and its capacity to adjust to exogenous corticosterone. Endocrinology. 131: 585 – 594.en_US
dc.identifier.citedreferenceYoung EA, Akil H. ( 1985 ). CRF stimulation of ACTH/beta-endorphin release: Effect of acute and chronic stress. Endocrinology. 117: 23 – 30.en_US
dc.identifier.citedreferenceCahill CA, Matthews JD, Akil H. ( 1983 ). Human plasma !3-endorphin-like peptides: A rapid, high recovery extraction technique and validation of radioimmunoassay. J Clin Endocrinol Metab. 56: 993 – 997.en_US
dc.identifier.citedreferenceYoung EA, Spencer RL. McEwen BS. ( 1990 ). Changes at Multiple levels of the Hypothalamic Pituitary Adrenal Axis Following Repeated ECS. Pspchoneuroendocrinology. 15: 165 – 172.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.