Show simple item record

Connective Tissue Growth Factor Promotes Fibrosis Downstream of TGFΒ and IL-6 in Chronic Cardiac Allograft Rejection

dc.contributor.authorBooth, Adam J.en_US
dc.contributor.authorCsencsits-Smith, K.en_US
dc.contributor.authorWood, S. C.en_US
dc.contributor.authorLu, G.en_US
dc.contributor.authorLipson, K. E.en_US
dc.contributor.authorBishop, D. Keithen_US
dc.date.accessioned2010-06-01T19:26:01Z
dc.date.available2010-06-01T19:26:01Z
dc.date.issued2010-02en_US
dc.identifier.citationBooth, A. J.; Csencsits-Smith, K.; Wood, S. C.; Lu, G.; Lipson, K. E.; Bishop, D. K. (2010). "Connective Tissue Growth Factor Promotes Fibrosis Downstream of TGFΒ and IL-6 in Chronic Cardiac Allograft Rejection." American Journal of Transplantation 10(2): 220-230. <http://hdl.handle.net/2027.42/72574>en_US
dc.identifier.issn1600-6135en_US
dc.identifier.issn1600-6143en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72574
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19788504&dopt=citationen_US
dc.format.extent534146 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights© 2010 American Society of Transplantation and the American Society of Transplant Surgeonsen_US
dc.subject.otherChronic Rejectionen_US
dc.subject.otherCTGFen_US
dc.subject.otherFibrosisen_US
dc.subject.otherIL-6en_US
dc.subject.otherTGFΒen_US
dc.titleConnective Tissue Growth Factor Promotes Fibrosis Downstream of TGFΒ and IL-6 in Chronic Cardiac Allograft Rejectionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Surgery, University of Michigan Medical Center, Ann Arbor, MIen_US
dc.contributor.affiliationotherGraduate Program in Immunologyen_US
dc.contributor.affiliationotherDepartment of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TXen_US
dc.contributor.affiliationotherFibroGen Inc., San Francisco, CAen_US
dc.identifier.pmid19788504en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72574/1/j.1600-6143.2009.02826.x.pdf
dc.identifier.doi10.1111/j.1600-6143.2009.02826.xen_US
dc.identifier.sourceAmerican Journal of Transplantationen_US
dc.identifier.citedreferenceOrosz CG, Pelletier RP. Chronic remodeling pathology in grafts. Curr Opin Immunol 1997; 9: 676 – 680.en_US
dc.identifier.citedreferencePaul LC. Current knowledge of the pathogenesis of chronic allograft dysfunction. Transplant Proc 1999; 31: 1793 – 1795.en_US
dc.identifier.citedreferenceWaaga AM, Gasser M, Laskowski I, Tilney NL. Mechanisms of chronic rejection. Curr Opin Immunol 2000; 12: 517 – 521.en_US
dc.identifier.citedreferenceWomer KL, Vella JP, Sayegh MH. Chronic allograft dysfunction: Mechanisms and new approaches to therapy. Semin Nephrol 2000; 20: 126 – 147.en_US
dc.identifier.citedreferenceWeiss MJ, Madsen JC, Rosengard BR, Allan JS. Mechanisms of chronic rejection in cardiothoracic transplantation. Front Biosci 2008; 13: 2980 – 2988.en_US
dc.identifier.citedreferenceMehra MR. Contemporary concepts in prevention and treatment of cardiac allograft vasculopathy. Am J Transplant 2006; 6: 1248 – 1256.en_US
dc.identifier.citedreferenceValantine H. Cardiac allograft vasculopathy after heart transplantation: Risk factors and management. J Heart Lung Transplant 2004; 23 ( 5 Suppl ): S187 – S193.en_US
dc.identifier.citedreferenceCsencsits K, Wood SC, Lu G et al. Transforming growth factor beta-induced connective tissue growth factor and chronic allograft rejection. Am J Transplant 2006; 6 ( 5 Pt 1 ): 959 – 966.en_US
dc.identifier.citedreferenceJain S, Furness PN, Nicholson ML. The role of transforming growth factor beta in chronic renal allograft nephropathy. Transplantation 2000; 69: 1759 – 1766.en_US
dc.identifier.citedreferenceLi MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006; 24: 99 – 146.en_US
dc.identifier.citedreferenceBlobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000; 342: 1350 – 1358.en_US
dc.identifier.citedreferenceWood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3: 199 – 210.en_US
dc.identifier.citedreferenceYong Z, Chang L, Mei YX, Yi L. Role and mechanisms of CD4+CD25+ regulatory T cells in the induction and maintenance of transplantation tolerance. Transpl Immunol 2007; 17: 120 – 129.en_US
dc.identifier.citedreferenceWalsh PT, Taylor DK, Turka LA. Tregs and transplantation tolerance. J Clin Invest 2004; 114: 1398 – 1403.en_US
dc.identifier.citedreferenceBrattain MG, Markowitz SD, Willson JK. The type II transforming growth factor-beta receptor as a tumor-suppressor gene. Curr Opin Oncol 1996; 8: 49 – 53.en_US
dc.identifier.citedreferenceLeask A, Abraham DJ. The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol 2003; 81: 355 – 363.en_US
dc.identifier.citedreferenceChen MM, Lam A, Abraham JA, Schreiner GF, Joly AH. CTGF expression is induced by TGF-beta in cardiac fibroblasts and cardiac myocytes: A potential role in heart fibrosis. J Mol Cell Cardiol 2000; 32: 1805 – 1819.en_US
dc.identifier.citedreferencede Winter P, Leoni P, Abraham D. Connective tissue growth factor: Structure-function relationships of a mosaic, multifunctional protein. Growth Factors 2008; 26: 80 – 91.en_US
dc.identifier.citedreferenceBonniaud P, Martin G, Margetts PJ et al. Connective tissue growth factor is crucial to inducing a profibrotic environment in “fibrosis-resistant” BALB/c mouse lungs. Am J Respir Cell Mol Biol 2004; 31: 510 – 516.en_US
dc.identifier.citedreferenceCheng O, Thuillier R, Sampson E et al. Connective tissue growth factor is a biomarker and mediator of kidney allograft fibrosis. Am J Transplant 2006; 6: 2292 – 2306.en_US
dc.identifier.citedreferenceYuan YC, Xia ZK, Mu JJ, Zhang QC, Yin BL. Increased connective tissue growth factor expression in a rat model of chronic heart allograft rejection. J Formos Med Assoc 2009; 108: 240 – 246.en_US
dc.identifier.citedreferenceDaniels A, van Bilsen M, Goldschmeding R, Van Der Vusse GJ, van Nieuwenhoven FA. Connective tissue growth factor and cardiac fibrosis. Acta Physiol (Oxf) 2009; 195: 321 – 338.en_US
dc.identifier.citedreferenceMannon RB. Therapeutic targets in the treatment of allograft fibrosis. Am J Transplant 2006; 6 ( 5 Pt 1 ): 867 – 875.en_US
dc.identifier.citedreferenceCsencsits K, Wood SC, Lu G, Bishop DK. Transforming growth factor-beta1 gene transfer is associated with the development of regulatory cells. Am J Transplant 2005; 5: 2378 – 2384.en_US
dc.identifier.citedreferenceGuo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res 2009; 19: 71 – 88.en_US
dc.identifier.citedreferenceDiaz JA, Booth AJ, Lu G, Wood SC, Pinsky DJ, Bishop DK. Critical role for IL-6 in hypertrophy and fibrosis in chronic cardiac allograft rejection. Am J Transplant 2009; 9: 1773 – 1783.en_US
dc.identifier.citedreferenceBettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441: 235 – 238.en_US
dc.identifier.citedreferenceChen RH, Chang MC, Su YH, Tsai YT, Kuo ML. Interleukin-6 inhibits transforming growth factor-beta-induced apoptosis through the phosphatidylinositol 3-kinase/Akt and signal transducers and activators of transcription 3 pathways. J Biol Chem 1999; 274: 23013 – 23019.en_US
dc.identifier.citedreferenceZhang XL, Topley N, Ito T, Phillips A. Interleukin-6 regulation of transforming growth factor (TGF)-beta receptor compartmentalization and turnover enhances TGF-beta1 signaling. J Biol Chem 2005; 280: 12239 – 12245.en_US
dc.identifier.citedreferenceCorry RJ, Winn HJ, Russell PS. Primarily vascularized allografts of hearts in mice. The role of H-2D, H-2K, and non-H-2 antigens in rejection. Transplantation 1973; 16: 343 – 350.en_US
dc.identifier.citedreferenceBurrell BE, Csencsits K, Lu G, Grabauskiene S, Bishop DK. CD8+ Th17 mediate costimulation blockade-resistant allograft rejection in T-bet-deficient mice. J Immunol 2008; 181: 3906 – 3914.en_US
dc.identifier.citedreferenceAikawa T, Gunn J, Spong SM, Klaus SJ, Korc M. Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther 2006; 5: 1108 – 1116.en_US
dc.identifier.citedreferenceDornhofer N, Spong S, Bennewith K et al. Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res 2006; 66: 5816 – 5827.en_US
dc.identifier.citedreferenceChan SY, Goodman RE, Szmuszkovicz JR, Roessler B, Eichwald EJ, Bishop DK. DNA-liposome versus adenoviral mediated gene transfer of transforming growth factor beta1 in vascularized cardiac allografts: Differential sensitivity of CD4+ and CD8+ T cells to transforming growth factor beta1. Transplantation 2000; 70: 1292 – 1301.en_US
dc.identifier.citedreferenceChan SY, Li K, Piccotti JR et al. Tissue-specific consequences of the anti-adenoviral immune response: Implications for cardiac transplants. Nat Med 1999; 5: 1143 – 1149.en_US
dc.identifier.citedreferenceHaberberger TC, Kupfer K, Murphy JE. Profiling of genes which are differentially expressed in mouse liver in response to adenoviral vectors and delivered genes. Gene Ther 2000; 7: 903 – 909.en_US
dc.identifier.citedreferenceBurrell BE, Lu G, Li XC, Bishop DK. OX40 costimulation prevents allograft acceptance induced by CD40-CD40L blockade. J Immunol 2009; 182: 379 – 390.en_US
dc.identifier.citedreferenceNozato T, Ito H, Tamamori M et al. G1 cyclins are involved in the mechanism of cardiac myocyte hypertrophy induced by angiotensin II. Jpn Circ J 2000; 64: 595 – 601.en_US
dc.identifier.citedreferenceBishop DK, Li W, Chan SY, Ensley RD, Shelby J, Eichwald EJ. Helper T lymphocyte unresponsiveness to cardiac allografts following transient depletion of CD4-positive cells. Implications for cellular and humoral responses. Transplantation 1994; 58: 576 – 584.en_US
dc.identifier.citedreferencePiccotti JR, Li K, Chan SY, Eichwald EJ, Bishop DK. Cytokine regulation of chronic cardiac allograft rejection: Evidence against a role for Th1 in the disease process. Transplantation 1999; 67: 1548 – 1555.en_US
dc.identifier.citedreferenceCsencsits K, Burrell BE, Lu G, Eichwald EJ, Stahl GL, Bishop DK. The classical complement pathway in transplantation: Unanticipated protective effects of C1q and role in inductive antibody therapy. Am J Transplant 2008; 8: 1622 – 1630.en_US
dc.identifier.citedreferenceBonniaud P, Margetts PJ, Kolb M et al. Adenoviral gene transfer of connective tissue growth factor in the lung induces transient fibrosis. Am J Respir Crit Care Med 2003; 168: 770 – 778.en_US
dc.identifier.citedreferenceGrotendorst GR, Okochi H, Hayashi N. A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 1996; 7: 469 – 480.en_US
dc.identifier.citedreferenceFrazier K, Williams S, Kothapalli D, Klapper H, Grotendorst GR. Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 1996; 107: 404 – 411.en_US
dc.identifier.citedreferenceMori T, Kawara S, Shinozaki M et al. Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model. J Cell Physiol 1999; 181: 153 – 159.en_US
dc.identifier.citedreferenceBurlingham WJ, Love RB, Jankowska-Gan E et al. IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest 2007; 117: 3498 – 3506.en_US
dc.identifier.citedreferenceYuan X, Paez-Cortez J, Schmitt-Knosalla I et al. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med 2008; 205: 3133 – 3144.en_US
dc.identifier.citedreferenceHayata N, Fujio Y, Yamamoto Y et al. Connective tissue growth factor induces cardiac hypertrophy through Akt signaling. Biochem Biophys Res Commun 2008; 370: 274 – 278.en_US
dc.identifier.citedreferenceMatsui Y, Sadoshima J. Rapid upregulation of CTGF in cardiac myocytes by hypertrophic stimuli: Implication for cardiac fibrosis and hypertrophy. J Mol Cell Cardiol 2004; 37: 477 – 481.en_US
dc.identifier.citedreferenceCaron KM, James LR, Kim HS et al. Cardiac hypertrophy and sudden death in mice with a genetically clamped renin transgene. Proc Natl Acad Sci USA 2004; 101: 3106 – 3111.en_US
dc.identifier.citedreferenceFredj S, Bescond J, Louault C, Potreau D. Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation. J Cell Physiol 2005; 202: 891 – 899.en_US
dc.identifier.citedreferenceBabic AM, Chen CC, Lau LF. Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol 1999; 19: 2958 – 2966.en_US
dc.identifier.citedreferenceBall DK, Rachfal AW, Kemper SA, Brigstock DR. The heparin-binding 10 kDa fragment of connective tissue growth factor (CTGF) containing module 4 alone stimulates cell adhesion. J Endocrinol 2003; 176: R1 – R7.en_US
dc.identifier.citedreferenceChen CC, Chen N, Lau LF. The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem 2001; 276: 10443 – 10452.en_US
dc.identifier.citedreferenceChen Y, Abraham DJ, Shi-Wen X et al. CCN2 (connective tissue growth factor) promotes fibroblast adhesion to fibronectin. Mol Biol Cell 2004; 15: 5635 – 5646.en_US
dc.identifier.citedreferenceGao R, Brigstock DR. Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem 2004; 279: 8848 – 8855.en_US
dc.identifier.citedreferenceHoshijima M, Hattori T, Inoue M et al. CT domain of CCN2/CTGF directly interacts with fibronectin and enhances cell adhesion of chondrocytes through integrin alpha5beta1. FEBS Lett 2006; 580: 1376 – 1382.en_US
dc.identifier.citedreferenceNishida T, Kawaki H, Baxter RM, Deyoung RA, Takigawa M, Lyons KM. CCN2 (Connective Tissue Growth Factor) is essential for extracellular matrix production and integrin signaling in chondrocytes. J Cell Commun Signal 2007; 1: 45 – 58.en_US
dc.identifier.citedreferenceGao R, Brigstock DR. A novel integrin alpha5beta1 binding domain in module 4 of connective tissue growth factor (CCN2/CTGF) promotes adhesion and migration of activated pancreatic stellate cells. Gut 2006; 55: 856 – 862.en_US
dc.identifier.citedreferenceHeng EC, Huang Y, Black SA Jr, Trackman PC. CCN2, connective tissue growth factor, stimulates collagen deposition by gingival fibroblasts via module 3 and alpha6- and beta1 integrins. J Cell Biochem 2006; 98: 409 – 420.en_US
dc.identifier.citedreferenceJedsadayanmata A, Chen CC, Kireeva ML, Lau LF, Lam SC. Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3). J Biol Chem 1999; 274: 24321 – 24327.en_US
dc.identifier.citedreferenceWu SH, Lu C, Dong L, Chen ZQ. Signal transduction involved in CTGF-induced production of chemokines in mesangial cells. Growth Factors 2008; 26: 192 – 200.en_US
dc.identifier.citedreferenceZhao XM, Frist WH, Yeoh TK, Miller GG. Expression of cytokine genes in human cardiac allografts: Correlation of IL-6 and transforming growth factor-beta (TGF-beta) with histological rejection. Clin Exp Immunol 1993; 93: 448 – 451.en_US
dc.identifier.citedreferenceLetterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol 1998; 16: 137 – 161.en_US
dc.identifier.citedreferencePrud’homme GJ, Piccirillo CA. The inhibitory effects of transforming growth factor-beta-1 (TGF-beta1) in autoimmune diseases. J Autoimmun 2000; 14: 23 – 42.en_US
dc.identifier.citedreferenceWahl SM. Transforming growth factor beta: The good, the bad, and the ugly. J Exp Med 1994; 180: 1587 – 1590.en_US
dc.identifier.citedreferenceMassague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000; 103: 295 – 309.en_US
dc.identifier.citedreferenceFu S, Zhang N, Yopp AC et al. TGF-beta induces Foxp3 +T-regulatory cells from CD4+ CD25− precursors. Am J Transplant 2004; 4: 1614 – 1627.en_US
dc.identifier.citedreferenceChen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198: 1875 – 1886.en_US
dc.identifier.citedreferenceZheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25− precursors. J Immunol 2002; 169: 4183 – 4189.en_US
dc.identifier.citedreferenceMarin V, Montero-Julian FA, Gres S et al. The IL-6-soluble IL-6Ralpha autocrine loop of endothelial activation as an intermediate between acute and chronic inflammation: An experimental model involving thrombin. J Immunol 2001; 167: 3435 – 3442.en_US
dc.identifier.citedreferenceHurst SM, Wilkinson TS, McLoughlin RM et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001; 14: 705 – 714.en_US
dc.identifier.citedreferenceVenkatachalam K, Mummidi S, Cortez DM, Prabhu SD, Valente AJ, Chandrasekar B. Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2008; 294: H2078 – H2087.en_US
dc.identifier.citedreferenceJones SA. Directing transition from innate to acquired immunity: Defining a role for IL-6. J Immunol 2005; 175: 3463 – 3468.en_US
dc.identifier.citedreferenceWeissenbach M, Clahsen T, Weber C et al. Interleukin-6 is a direct mediator of T cell migration. Eur J Immunol 2004; 34: 2895 – 2906.en_US
dc.identifier.citedreferenceShi-wen X, Stanton LA, Kennedy L et al. CCN2 is necessary for adhesive responses to transforming growth factor-beta1 in embryonic fibroblasts. J Biol Chem 2006; 281: 10715 – 10726.en_US
dc.identifier.citedreferenceQi W, Chen X, Polhill TS et al. TGF-beta1 induces IL-8 and MCP-1 through a connective tissue growth factor-independent pathway. Am J Physiol Renal Physiol 2006; 290: F703 – F709.en_US
dc.identifier.citedreferenceIkawa Y, Ng PS, Endo K et al. Neutralizing monoclonal antibody to human connective tissue growth factor ameliorates transforming growth factor-beta-induced mouse fibrosis. J Cell Physiol 2008; 216: 680 – 687.en_US
dc.identifier.citedreferenceRaichlin E, Villarraga HR, Chandrasekaran K et al. Cardiac allograft remodeling after heart transplantation is associated with increased graft vasculopathy and mortality. Am J Transplant 2009; 9: 132 – 139.en_US
dc.identifier.citedreferenceTorre-Amione G. Cardiac allograft hypertrophy: A new target for therapy, a surrogate marker for survival? Am J Transplant 2009; 9: 7 – 8.en_US
dc.identifier.citedreferenceNishida T, Kubota S, Fukunaga T et al. CTGF/Hcs24, hypertrophic chondrocyte-specific gene product, interacts with perlecan in regulating the proliferation and differentiation of chondrocytes. J Cell Physiol 2003; 196: 265 – 275.en_US
dc.identifier.citedreferenceDuisters RF, Tijsen AJ, Schroen B et al. miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 2009; 104: 170 – 178, 176p following 178.en_US
dc.identifier.citedreferenceLiu W, Feng W, Wang F et al. Osteoprotegerin/RANK/RANKL axis in cardiac remodeling due to immuno-inflammatory myocardial disease. Exp Mol Pathol 2008; 84: 213 – 217.en_US
dc.identifier.citedreferenceOkada H, Kikuta T, Inoue T et al. Dexamethasone induces connective tissue growth factor expression in renal tubular epithelial cells in a mouse strain-specific manner. Am J Pathol 2006; 168: 737 – 747.en_US
dc.identifier.citedreferenceHolmes A, Abraham DJ, Sa S, Shiwen X, Black CM, Leask A. CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem 2001; 276: 10594 – 10601.en_US
dc.identifier.citedreferenceYoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 2007; 7: 454 – 465.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.