Show simple item record

Chaos and chaotic phase mixing in cuspy triaxial potentials

dc.contributor.authorKandrup, Henry E.en_US
dc.contributor.authorSiopis, Christosen_US
dc.date.accessioned2010-06-01T19:28:38Z
dc.date.available2010-06-01T19:28:38Z
dc.date.issued2003-11en_US
dc.identifier.citationKandrup, Henry E.; Siopis, Christos (2003). "Chaos and chaotic phase mixing in cuspy triaxial potentials." Monthly Notices of the Royal Astronomical Society 345(3): 727-742. <http://hdl.handle.net/2027.42/72616>en_US
dc.identifier.issn0035-8711en_US
dc.identifier.issn1365-2966en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72616
dc.description.abstractThis paper continues an investigation of chaos and chaotic phase mixing in triaxial generalizations of the Dehnen potential which have been proposed to describe realistic elliptical galaxies that have a strong density cusp and manifest significant deviations from axisymmetry. Earlier work is extended in three important ways, namely by exploring systematically the effects of (1) variable axis ratios, (2) ‘graininess’ associated, for example, with stars and bound substructures, idealized as friction and white noise, and (3) large-scale organized motions within a galaxy and a dense cluster environment, each presumed to induce near-random forces idealized as coloured noise with a finite autocorrelation time. The effects of varying the axis ratio were studied in detail by considering two sequences of models with cusp exponent Γ= 1 and, respectively, axis ratios a : b : c = 1.00: 1.00 −Δ: 0.50 and a : b : c = 1.00: 1.00 −Δ: 1.00 − 2Δ for variable Δ. Three important conclusions are that (1) not all the chaos can be attributed to the presence of the cusp, (2) significant chaos can persist even for axisymmetric systems, and (3) the introduction of a supermassive black hole can induce both moderate increases in the relative number of chaotic orbits and substantial increases in the size of the largest Lyapunov exponent. In the absence of any perturbations, the coarse-grained distribution function associated with an initially localized ensemble of chaotic orbits evolves exponentially towards a nearly time-independent form at a rate Λ that correlates with the typical values of the finite-time Lyapunov exponents Χ associated with the evolving orbits. Allowing for discreteness effects and/or an external environment accelerates phase-space transport both by increasing the rate at which orbits spread out within a given phase-space region and by facilitating diffusion along the Arnold web that connects different phase-space regions, so as to facilitate an approach towards a true equilibrium. The details of the perturbation appear unimportant. All that really matters are the amplitude and, for the case of coloured noise, the autocorrelation time, i.e. the characteristic time over which the perturbation varies. Overall, the effects of the perturbations scale logarithmically in both amplitude and autocorrelation time. Even comparatively weak perturbations can increase Λ by a factor of three or more, a fact that has potentially significant implications for violent relaxation.en_US
dc.format.extent1254051 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2003 RASen_US
dc.subject.otherGalaxies: Formationen_US
dc.subject.otherGalaxies: Kinematics and Dynamicsen_US
dc.subject.otherGalaxies: Structureen_US
dc.titleChaos and chaotic phase mixing in cuspy triaxial potentialsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelAstronomyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Astronomy, University of Michigan, Ann Arbor, MI 48109-1090, USAen_US
dc.contributor.affiliationotherDepartment of Astronomy, University of Florida, Gainesville, FL 32611-2055, USAen_US
dc.contributor.affiliationotherDepartment of Physics, University of Florida, Gainesville, FL 32611-2055, USAen_US
dc.contributor.affiliationotherInstitute for Fundamental Theory, University of Florida, Gainesville, FL 32611-2055, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72616/1/j.1365-8711.2003.06985.x.pdf
dc.identifier.doi10.1046/j.1365-8711.2003.06985.xen_US
dc.identifier.sourceMonthly Notices of the Royal Astronomical Societyen_US
dc.identifier.citedreferenceArnold V. I., 1964, Russ. Math. Surveys, 18, 85en_US
dc.identifier.citedreferenceBinney J., Tremaine S., 1987, Galactic Dynamics. Princeton Univ. Press, Princeton, NJen_US
dc.identifier.citedreferenceBohn C. L., Sideris I. V., 2003, Phys. Rev. Special Topics Accelerators Beams, 6, 034203-1en_US
dc.identifier.citedreferenceBrown M., Reiser M., 1995, Phys. Plasmas, 2, 965en_US
dc.identifier.citedreferenceChandrasekhar S., 1941, ApJ, 94, 511en_US
dc.identifier.citedreferenceChandrasekhar S., 1943, Rev. Mod. Phys., 15, 1en_US
dc.identifier.citedreferenceChandrasekhar S., von Neumann J., 1942, ApJ, 95, 489en_US
dc.identifier.citedreferenceContopoulos G., 1971, AJ, 76, 147en_US
dc.identifier.citedreferenceContopoulos G., 2002, Order and Chaos in Dynamical Astronomy. Springer, New Yorken_US
dc.identifier.citedreferenceDehnen W., 1993, MNRAS, 265, 250en_US
dc.identifier.citedreferenceEl-Zant A., Shlosman I., 2002, ApJ, 577, 626en_US
dc.identifier.citedreferenceGerhart O. E., Binney J. J., 1985, MNRAS, 216, 467en_US
dc.identifier.citedreferenceGluckstern R., 1994, Phys. Rev. Lett., 73, 1247en_US
dc.identifier.citedreferenceGrassberger P., Badii R., Politi A., 1988, J. Stat. Phys., 51, 135en_US
dc.identifier.citedreferenceGriner A., Strittmatter W., Honerkamp J., 1988, J. Stat. Phys., 51, 95en_US
dc.identifier.citedreferenceHabib S., Kandrup H. E., Mahon M. E., 1997, ApJ, 480, 155en_US
dc.identifier.citedreferenceHolley-Bockelmann K., Mihos J. C., Siggurdsson S., Hernquist L., 2001, ApJ, 549, 862en_US
dc.identifier.citedreferenceHonerkamp J., 1994, Stochastic Dynamical Systems. VCH Publishers, New Yorken_US
dc.identifier.citedreferenceKandrup H. E., 1981, ApJ, 244, 1039en_US
dc.identifier.citedreferenceKandrup H. E., 1998a, MNRAS, 299, 1139en_US
dc.identifier.citedreferenceKandrup H. E., 1998b, MNRAS, 301, 960en_US
dc.identifier.citedreferenceKandrup H. E., 1999, in Merritt D. R., Valluri M., Sellwood J. A., eds, ASP Conf. Ser., Vol. 182, Galaxy Dynamics. Astron. Soc. Pac., San Francisco, p. 197en_US
dc.identifier.citedreferenceKandrup H. E., 2002, Space Sci. Rev., 102, 101en_US
dc.identifier.citedreferenceKandrup H. E., Mahon M. E., 1994, Phys. Rev. E, 49, 3735en_US
dc.identifier.citedreferenceKandrup H. E., Sideris I. V., 2002, Celestial Mechanics, 82, 61en_US
dc.identifier.citedreferenceKandrup H. E., Sideris I. V., 2003, ApJ, 585, 244en_US
dc.identifier.citedreferenceKandrup H. E., Eckstein B. L., Bradley B. O., 1997, A&A, 320, 65en_US
dc.identifier.citedreferenceKandrup H. E., Pogorelov I. V., Sideris I. V., 2000, MNRAS, 311, 719en_US
dc.identifier.citedreferenceKandrup H. E., Vass I. M., Sideris I. V., 2003a, MNRAS, 341, 927en_US
dc.identifier.citedreferenceKandrup H. E., Sideris I. V., Terzić B., Bohn C. L., 2003b ( astro-ph/0303173 )en_US
dc.identifier.citedreferenceLichtenberg A. J., Lieberman M. A., 1992, Regular and Chaotic Dynamics. Springer, New Yorken_US
dc.identifier.citedreferenceLynden-Bell D., 1967, MNRAS, 136, 101en_US
dc.identifier.citedreferenceMacKay R. S., Meiss J. D., Percival I. C., 1984, Physica, 13D, 55en_US
dc.identifier.citedreferenceMather J., 1982, Topology, 21, 457en_US
dc.identifier.citedreferenceMerritt D., 1997, ApJ, 486, 102en_US
dc.identifier.citedreferenceMerritt D., Fridman T., 1996, ApJ, 460, 136en_US
dc.identifier.citedreferenceMerritt D., Valluri M., 1996, ApJ, 471, 82en_US
dc.identifier.citedreferencePogorelov I. V., Kandrup H. E., 1999, Phys. Rev. E, 60, 1567en_US
dc.identifier.citedreferencePoon M. Y., Merritt D., 2002, ApJ, 568, L89en_US
dc.identifier.citedreferenceSchwarzschild M., 1979, ApJ, 232, 236en_US
dc.identifier.citedreferenceSideris I. V., Kandrup H. E., 2002, Phys. Rev. E, 65, 066203-1en_US
dc.identifier.citedreferenceSiopis C. V., Kandrup H. E., 2000, MNRAS, 319, 43en_US
dc.identifier.citedreferenceStrasburg S., Davidson R. C., 2000, Phys. Rev. E, 61, 5753en_US
dc.identifier.citedreferencevan Kampen N. G., 1981, Stochastic Processes in Physics and Chemistry. North Holland, Amsterdamen_US
dc.identifier.citedreferenceWeinberg M. D., 2001a, MNRAS, 328, 311en_US
dc.identifier.citedreferenceWeinberg M. D., 2001b, MNRAS, 328, 321en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.