Show simple item record

Simulated chronic NO 3 − deposition reduces soil respiration in northern hardwood forests

dc.contributor.authorBurton, Andrew J.en_US
dc.contributor.authorPregitzer, Kurt S.en_US
dc.contributor.authorCrawford, Jeffrey N.en_US
dc.contributor.authorZogg, Gregory P.en_US
dc.contributor.authorZak, Donald R.en_US
dc.date.accessioned2010-06-01T19:28:49Z
dc.date.available2010-06-01T19:28:49Z
dc.date.issued2004-07en_US
dc.identifier.citationBurton, Andrew J.; Pregitzer, Kurt S.; Crawford, Jeffrey N.; Zogg, Gregory P.; Zak, Donald R. (2004). "Simulated chronic NO 3 − deposition reduces soil respiration in northern hardwood forests." Global Change Biology 10(7): 1080-1091. <http://hdl.handle.net/2027.42/72619>en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72619
dc.description.abstractChronic N additions to forest ecosystems can enhance soil N availability, potentially leading to reduced C allocation to root systems. This in turn could decrease soil CO 2 efflux. We measured soil respiration during the first, fifth, sixth and eighth years of simulated atmospheric NO 3 − deposition (3 g N m −2  yr −1 ) to four sugar maple-dominated northern hardwood forests in Michigan to assess these possibilities. During the first year, soil respiration rates were slightly, but not significantly, higher in the NO 3 − -amended plots. In all subsequent measurement years, soil respiration rates from NO 3 − -amended soils were significantly depressed. Soil temperature and soil matric potential were measured concurrently with soil respiration and used to develop regression relationships for predicting soil respiration rates. Estimates of growing season and annual soil CO 2 efflux made using these relationships indicate that these C fluxes were depressed by 15% in the eighth year of chronic NO 3 − additions. The decrease in soil respiration was not due to reduced C allocation to roots, as root respiration rates, root biomass, and root turnover were not significantly affected by N additions. Aboveground litter also was unchanged by the 8 years of treatment. Of the remaining potential causes for the decline in soil CO 2 efflux, reduced microbial respiration appears to be the most likely possibility. Documented reductions in microbial biomass and the activities of extracellular enzymes used for litter degradation on the NO 3 − -amended plots are consistent with this explanation.en_US
dc.format.extent278931 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© 2004 Blackwell Publishing Ltden_US
dc.subject.otherAtmospheric Nitrate Depositionen_US
dc.subject.otherNitrogen Fertilizationen_US
dc.subject.otherRoot Biomassen_US
dc.subject.otherRoot Respirationen_US
dc.subject.otherSoil CO 2 Effluxen_US
dc.subject.otherTemperature and Moisture Effectsen_US
dc.titleSimulated chronic NO 3 − deposition reduces soil respiration in northern hardwood forestsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Forest Resources & Environmental Science, Michigan Technological University, Houghton, MI 49931, USA ,en_US
dc.contributor.affiliationum† School of Natural Resources & Environment, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationother† Department of Biological Sciences, University of New England, Biddeford, ME 04005, USA ,en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72619/1/j.1365-2486.2004.00737.x.pdf
dc.identifier.doi10.1111/j.1365-2486.2004.00737.xen_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceÅgren GI, Bosatta E, Magill AH ( 2001 ) Combining theory and experiment to understand the effects of inorganic nitrogen on litter decomposition. Oecologia, 128, 94 – 98.en_US
dc.identifier.citedreferenceBehera N, Joshi SK, Pati DP ( 1990 ) Root contribution to total soil metabolism in a tropical forest soil from Orissa, India. Forest Ecology and Management, 36, 125 – 134.en_US
dc.identifier.citedreferenceBerg B ( 2000 ) Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133, 13 – 22.en_US
dc.identifier.citedreferenceBerg B, Matzner E ( 1997 ) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Reviews, 5, 1 – 25.en_US
dc.identifier.citedreferenceBloom AJ, Caldwell RM ( 1988 ) Root excision decreases nutrient absorption and gas fluxes. Plant Physiology, 87, 794 – 796.en_US
dc.identifier.citedreferenceBowden RD, Davidson E, Savage K et al. ( 2004 ) Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, in press.en_US
dc.identifier.citedreferenceBowden RD, Nadelhoffer KJ, Boone RD et al. ( 1993 ) Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Canadian Journal of Forest Research, 23, 1402 – 1407.en_US
dc.identifier.citedreferenceBowden RD, Rullo G, Stevens GR et al. ( 2000 ) Soil fluxes of carbon dioxide, nitrous oxide, and methane at a productive temperate deciduous forest. Journal of Environmental Quality, 29, 268 – 276.en_US
dc.identifier.citedreferenceBredemeier M, Blanck K, Xu YJ et al. ( 1998 ) Input–output budgets at the NITREX sites. Forest Ecology and Management, 101, 57 – 64.en_US
dc.identifier.citedreferenceBurton AJ, Pregitzer KS ( 2002 ) Measurement carbon dioxide concentration does not affect root respiration rates of nine tree species in the field. Tree Physiology, 22, 67 – 72.en_US
dc.identifier.citedreferenceBurton AJ, Pregitzer KS ( 2003 ) Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine. Tree Physiology, 23, 273 – 280.en_US
dc.identifier.citedreferenceBurton AJ, Pregitzer KS, Hendrick RL ( 2000 ) Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125, 389 – 399.en_US
dc.identifier.citedreferenceBurton AJ, Pregitzer KS, Ruess RW et al. ( 2002 ) Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes. Oecologia, 131, 559 – 568.en_US
dc.identifier.citedreferenceBurton AJ, Pregitzer KS, Zogg GP et al. ( 1996 ) Latitudinal variation in sugar maple fine root respiration. Canadian Journal of Forest Research, 26, 1761 – 1768.en_US
dc.identifier.citedreferenceBurton AJ, Pregitzer KS, Zogg GP et al. ( 1998 ) Drought reduces root respiration in sugar maple forests. Ecological Applications, 8, 771 – 778.en_US
dc.identifier.citedreferenceBurton AJ, Zogg GP, Pregitzer KS et al. ( 1997 ) Effects of measurement CO 2 concentration on sugar maple root respiration. Tree Physiology, 17, 421 – 427.en_US
dc.identifier.citedreferenceButnor JR, Johnsen KH, Oren R et al. ( 2003 ) Reduction of forest floor respiration by fertilization on both carbon dioxide-enriched and reference 17-year-old loblolly pine stands. Global Change Biology, 9, 849 – 861.en_US
dc.identifier.citedreferenceCarreiro MM, Sinsabaugh RL, Repert DA et al. ( 2000 ) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359 – 2365.en_US
dc.identifier.citedreferenceDakora FD, Phillips DA ( 2002 ) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245, 35 – 47.en_US
dc.identifier.citedreferenceDeforest JL, Zak DR, Pregitzer KS et al. ( 2004 ) Anthropogenic NO 3 − deposition alters microbial community function in soil. Soil Science Society of America Journal, 68, 132 – 138.en_US
dc.identifier.citedreferenceEdwards NT, Harris WF ( 1977 ) Carbon cycling in a mixed deciduous forest floor. Ecology, 58, 431 – 437.en_US
dc.identifier.citedreferenceEgerton-Warburton LM, Allen EB ( 2000 ) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications, 10, 484 – 496.en_US
dc.identifier.citedreferenceEissenstat DM, Yanai RD ( 1997 ) The ecology of root lifespan. Advances in Ecological Research, 27, 1 – 60.en_US
dc.identifier.citedreferenceEttema CH, Lowrance R, Coleman DC ( 1999 ) Riparian soil response to surface nitrogen input: temporal changes in denitrification, labile and microbial C and N pools, and bacterial and fungal respiration. Soil Biology and Biochemistry, 31, 1609 – 1624.en_US
dc.identifier.citedreferenceFenn ME, Poth MA, Aber JD et al. ( 1998 ) Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8, 706 – 733.en_US
dc.identifier.citedreferenceFog K ( 1988 ) The effect of added nitrogen on the rate of decomposition of organic matter. Biological Reviews of the Cambridge Philosophical Society, 63, 433 – 462.en_US
dc.identifier.citedreferenceFox GA ( 1993 ) Failure-time analysis: emergence, flowering, survivorship, and other waiting times. In: Design and Analysis of Ecological Experiments ( eds Scheiner SM, Gurevitch J ), pp. 253 – 289. Chapman & Hall, New York.en_US
dc.identifier.citedreferenceHarding ESE, Inc. ( 2002 ) Clean air status and trends network (CASTNet) 2001 annual report. Prepared for US Environmental Protection Agency, Research Triangle Park, NC. Contract Number 68-D-98-112, Gainesville, FL.en_US
dc.identifier.citedreferenceHayman DS ( 1982 ) Influence of soils and fertility on activity and survival of vesicular–arbuscular mycorrhizal fungi. Phytopathology, 72, 1119 – 1125.en_US
dc.identifier.citedreferenceHaynes BE, Gower ST ( 1995 ) Belowground carbon allocation in unfertilized and fertilized plantations in northern Wisconsin. Tree Physiology, 15, 317 – 325.en_US
dc.identifier.citedreferenceHealy RW, Striegl RG, Russell TF et al. ( 1996 ) Numerical evaluation of static-chamber measurements of soil–atmosphere gas exchange: identification of physical processes. Soil Science Society of America Journal, 60, 740 – 747.en_US
dc.identifier.citedreferenceHeijne B, Dueck TA, Van Der Eerden LJ et al. ( 1994 ) Effects of atmospheric ammonia and ammonium sulphate on vesicular-mycorrhizal colonization in three heathland species. New Phytologist, 127, 685 – 696.en_US
dc.identifier.citedreferenceHeijne B, Hofstra JJ, Heil GW et al. ( 1992 ) Effect of the air pollution component ammonium sulphate on the VAM infection rate of three heathland species. Plant and Soil, 144, 1 – 12.en_US
dc.identifier.citedreferenceHendrick RL, Pregitzer KS ( 1992 ) The demography of fine roots in a northern hardwood forest. Ecology, 73, 1094 – 1104.en_US
dc.identifier.citedreferenceHendrick RL, Pregitzer KS ( 1993 ) The dynamics of fine root length, biomass and nitrogen content in two northern hardwood ecosystems. Canadian Journal of Forest Research, 23, 2507 – 2520.en_US
dc.identifier.citedreferenceHendricks JJ, Nadelhoffer KJ, Aber JD ( 1993 ) Assessing the role of fine roots in carbon and nutrient cycling. Trends in Ecology and Evolution, 8, 174 – 178.en_US
dc.identifier.citedreferenceHomann PS, Caldwell BA, Chappell HN et al. ( 2001 ) Douglas-fir soil C and N properties a decade after termination of urea fertilization. Canadian Journal of Forest Research, 31, 2225 – 2236.en_US
dc.identifier.citedreferenceHoughton RA, Woodwell GM ( 1989 ) Global climatic change. Scientific American, 260, 36 – 44.en_US
dc.identifier.citedreferenceInsam H, PalojÄrvi A ( 1995 ) Effects of forest fertilization on nitrogen leaching and soil microbial properties in the Northern Calcareous Alps of Austria. Plant and Soil, 168–169, 75 – 81.en_US
dc.identifier.citedreferenceJanssens IA, Lankreijer H, Matteucci G et al. ( 2001 ) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7, 269 – 278.en_US
dc.identifier.citedreferenceJensen LS, Mueller T, Tate KR et al. ( 1996 ) Soil surface CO 2 flux as an index of soil respiration in situ: a comparison of two chamber methods. Soil Biology and Biochemistry, 28, 1297 – 1306.en_US
dc.identifier.citedreferenceKane ES, Pregitzer KS, Burton AJ ( 2003 ) Soil respiration along environmental gradients in Olympic National Park. Ecosystems, 6, 326 – 335.en_US
dc.identifier.citedreferenceKeyes MR, Grier CC ( 1981 ) Above- and belowground net production in 40-yr-old Douglas-fir stands on low and high productivity sites. Canadian Journal of Forest Research, 11, 599 – 605.en_US
dc.identifier.citedreferenceLambers H ( 1987 ) Growth, respiration, exudation and symbiotic associations: The fate of carbon translocated to the roots. In: Root development and function ( eds Gregory PJ, Lake JV, Rose DA ), pp. 125 – 145. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceLee ET ( 1992 ) Statistical Methods for Survival Data Analysis, 2nd edn. Wiley Interscience, New York.en_US
dc.identifier.citedreferenceMacDonald NW, Burton AJ, Liechty HO et al. ( 1992 ) Ion leaching in forest ecosystems along a Great Lakes air pollution gradient. Journal Environmental Quality, 21, 614 – 623.en_US
dc.identifier.citedreferenceMacDonald JA, Dise NB, Matzner E et al. ( 2002 ) Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biology, 8, 1028 – 1033.en_US
dc.identifier.citedreferenceMcDonnell E, Farrar JF ( 1992 ) Substrate supply and its effect on mitochondrial and whole tissue respiration in barley roots. In: Molecular, Biochemical and Physiological Aspects of Plant Respiration ( eds Lambers H, van der Plas LHW ), pp. 455 – 462. SPB Academic Publishing, The Hague, Netherlands.en_US
dc.identifier.citedreferenceMcDowell NG, Balster NJ, Marshall JD ( 2001 ) Belowground carbon allocation of Rocky Mountain Douglas-fir. Canadian Journal of Forest Research, 31, 1425 – 1436.en_US
dc.identifier.citedreferenceNadelhoffer KJ, Aber JD, Melillo JM ( 1985 ) Fine roots, net primary productivity, and soil nitrogen availability: a new hypothesis. Ecology, 66, 1377 – 1390.en_US
dc.identifier.citedreferenceNakane K, Yamamoto M, Tsubota H ( 1983 ) Estimation of root respiration rate in a mature forest ecosystem. Japanese Journal of Ecology, 33, 397 – 408.en_US
dc.identifier.citedreferenceNay SM, Mattson KG, Bormann BT ( 1994 ) Biases of chamber methods for measuring soil CO 2 efflux demonstrated with a laboratory apparatus. Ecology, 75, 2460 – 2463.en_US
dc.identifier.citedreferenceNohrstedt H-Ö, BÖrjesson G ( 1998 ) Respiration in a forest soil 27 years after fertilization with different doses of urea. Silva Fennica, 32, 383 – 388.en_US
dc.identifier.citedreferencePaul EA, Clark FE ( 1989 ) Soil Microbiology and Biochemistry. Academic Press, New York.en_US
dc.identifier.citedreferencePregitzer KS, DeForest JL, Burton AJ et al. ( 2002 ) Fine root architecture of nine North American trees. Ecological Monographs, 72, 293 – 309.en_US
dc.identifier.citedreferencePregitzer KS, Hendrick RL, Fogel R ( 1993 ) The demography of fine roots in response to patches of water and nitrogen. New Phytologist, 125, 575 – 580.en_US
dc.identifier.citedreferencePregitzer KS, Laskowski MJ, Burton AJ et al. ( 1998 ) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 18, 665 – 670.en_US
dc.identifier.citedreferencePregitzer KS, Zak DR, Burton AJ et al. ( 2004 ) Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry, in press.en_US
dc.identifier.citedreferencePregitzer KS, Zak DR, Curtis PS et al. ( 1995 ) Atmospheric CO 2, soil nitrogen and turnover of fine roots. New Phytologist, 129, 579 – 585.en_US
dc.identifier.citedreferenceQi J, Marshall JD, Mattson KG ( 1994 ) High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. New Phytologist, 128, 435 – 442.en_US
dc.identifier.citedreferenceRyan MG, Hubbard RM, Pongracic S et al. ( 1996 ) Foliage, fine-root, woody tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiology, 16, 333 – 343.en_US
dc.identifier.citedreferenceSaiya-Cork KR, Sinsabaugh RL, Zak DR ( 2002 ) The effects of long-term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 34, 1309 – 1315.en_US
dc.identifier.citedreferenceSAS Institute, Inc. ( 1989 ) SAS/STAT ® User's Guide, Version 6, Vol. 2, 4th edn. SAS Institute, Inc., Cary, NC.en_US
dc.identifier.citedreferenceSmucker AJM, McBurney SL, Srivanstava AK ( 1982 ) Quantitative separation of roots from compacted soil profiles by the hydropneumatic elutriation system. Agronomy Journal, 74, 500 – 503.en_US
dc.identifier.citedreferenceSÖderstrÖm B, BÅÅth E, Lundgren B ( 1983 ) Decrease in soil microbial activity and biomass owing to nitrogen amendments. Canadian Journal of Microbiology, 29, 1500 – 1506.en_US
dc.identifier.citedreferenceThirukkumaran CM, Parkinson D ( 2000 ) Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers. Soil Biology & Biochemistry, 32, 59 – 66.en_US
dc.identifier.citedreferenceTreseder KK, Allen MF ( 2000 ) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO 2 and nitrogen deposition. New Phytologist, 147, 189 – 200.en_US
dc.identifier.citedreferenceTreseder KK, Allen MF ( 2002 ) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytologist, 155, 507 – 515.en_US
dc.identifier.citedreferenceValentini R, Matteucci G, Dolman AJ et al. ( 2000 ) Respiration as the main determinant of carbon balance in European forests. Nature, 404, 861 – 864.en_US
dc.identifier.citedreferenceVogt KA, Grier CC, Meier CE et al. ( 1982 ) Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington. Ecology, 63, 370 – 380.en_US
dc.identifier.citedreferenceVogt KA, Vogt DJ, Gower ST et al. ( 1990 ) Carbon and nitrogen interactions for forest ecosystems. In Above and Belowground Interactions in Forest Trees in Acidified Soils ( ed. Persson H ), pp. 203 – 235. Commission of the European Communities, Belgium.en_US
dc.identifier.citedreferenceZak DR, Host GE, Pregitzer KS ( 1989 ) Regional variability in nitrogen mineralization, nitrification, and overstory biomass in northern Lower Michigan. Canadian Journal of Forest Research, 19, 1521 – 1526.en_US
dc.identifier.citedreferenceZak DR, Pregitzer KS, Holmes WE et al. ( 2004 ) Anthropogenic N deposition and the long-term fate of 15 NO 3 − in a northern hardwood ecosystem. Biogeochemistry, in press.en_US
dc.identifier.citedreferenceZogg GP, Zak DR, Burton AJ et al. ( 1996 ) Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability. Tree Physiology, 16, 719 – 725.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.