Show simple item record

An Osteoblast-dependent Mechanism Contributes to the Leptin Regulation of Insulin Secretion

dc.contributor.authorHinoi, Eiichien_US
dc.contributor.authorGao, Nanen_US
dc.contributor.authorJung, Dae Youngen_US
dc.contributor.authorYadav, Vijayen_US
dc.contributor.authorYoshizawa, Tatsuyaen_US
dc.contributor.authorKajimura, Daisukeen_US
dc.contributor.authorMyers, Jr. , Martin G.en_US
dc.contributor.authorChua, Jr. , Streamson C.en_US
dc.contributor.authorWang, Qinen_US
dc.contributor.authorKim, Jason K.en_US
dc.contributor.authorKaestner, Klaus H.en_US
dc.contributor.authorKarsenty, Gerarden_US
dc.date.accessioned2010-06-01T19:31:26Z
dc.date.available2010-06-01T19:31:26Z
dc.date.issued2009-09en_US
dc.identifier.citationHinoi, Eiichi; Gao, Nan; Jung, Dae Young; Yadav, Vijay; Yoshizawa, Tatsuya; Kajimura, Daisuke; Myers, Jr., Martin G.; Chua, Jr., Streamson C.; Wang, Qin; Kim, Jason K.; Kaestner, Klaus H.; Karsenty, Gerard (2009). "An Osteoblast-dependent Mechanism Contributes to the Leptin Regulation of Insulin Secretion." Annals of the New York Academy of Sciences 1173(s1 S1 Integrative Physiology ): E20-E30. <http://hdl.handle.net/2027.42/72661>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72661
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19751411&dopt=citationen_US
dc.format.extent815209 bytes
dc.format.extent182037 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights© 2009 The New York Academy of Sciencesen_US
dc.subject.otherLeptinen_US
dc.subject.otherOsteoblasten_US
dc.subject.otherOsteocalcinen_US
dc.titleAn Osteoblast-dependent Mechanism Contributes to the Leptin Regulation of Insulin Secretionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Internal Medicine and Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherDepartment of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York, USAen_US
dc.contributor.affiliationotherDepartment of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USAen_US
dc.contributor.affiliationotherDepartment of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USAen_US
dc.contributor.affiliationotherDepartment of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USAen_US
dc.contributor.affiliationotherDepartment of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama, USAen_US
dc.identifier.pmid19751411en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72661/1/j.1749-6632.2009.05061.x.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72661/2/NYAS_5061_sm_SuppMat.pdf
dc.identifier.doi10.1111/j.1749-6632.2009.05061.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceMorioka, T., E. Asilmaz, J. Hu, et al. 2007. Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J. Clin. Invest. 117: 2860 – 2868.en_US
dc.identifier.citedreferenceCovey, S.D., R.D. Wideman, C. McDonald, et al. 2006. The pancreatic beta cell is a key site for mediating the effects of leptin on glucose homeostasis. Cell Metab. 4: 291 – 302.en_US
dc.identifier.citedreferenceKieffer, T.J. & J.F. Habener. 2000. The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am. J. Physiol. Endocrinol. Metab. 278: E1 – E14.en_US
dc.identifier.citedreferenceSpiegelman, B.M. & J.S. Flier. 1996. Adipogenesis and obesity: rounding out the big picture. Cell 87: 377 – 389.en_US
dc.identifier.citedreferencePelleymounter, M.A., M.J. Cullen, M.B. Baker, et al. 1995. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269: 540 – 543.en_US
dc.identifier.citedreferenceMoitra, J., M.M. Mason, M. Olive, et al. 1998. Life without white fat: a transgenic mouse. Genes Dev. 12: 3168 – 3181.en_US
dc.identifier.citedreferenceFarooqi, I.S., G. Matarese, G.M. Lord, et al. 2002. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110: 1093 – 1103.en_US
dc.identifier.citedreferenceGrupe, A., B. Hultgren, A. Ryan, et al. 1995. Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Cell 83: 69 – 78.en_US
dc.identifier.citedreferenceRane, S.G., P. Dubus, R.V. Mettus, et al. 1999. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat. Genet. 22: 44 – 52.en_US
dc.identifier.citedreferenceBjÖrnholm, M., H. MÜnzberg, R.L. Leshan, et al. 2007. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J. Clin. Invest. 117: 1354 – 1360.en_US
dc.identifier.citedreferenceHummel, K.P., M.M. Dickie & D.L. Coleman. 1966. Diabetes, a new mutation in the mouse. Science 153: 1127 – 1128.en_US
dc.identifier.citedreferencevan de Wall, E. et al. 2008. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149: 1773 – 1785.en_US
dc.identifier.citedreferenceTakeda, S., F. Elefteriou, R. Levasseur, et al. 2002. Leptin regulates bone formation via the sympathetic nervous system. Cell 111: 305 – 317.en_US
dc.identifier.citedreferenceSatoh, N., Y. Ogawa, G. Katsuura, et al. 1999. Sympathetic activation of leptin via the ventromedial hypothalamus: leptin-induced increase in catecholamine secretion. Diabetes 48: 1787 – 1793.en_US
dc.identifier.citedreferenceBerthoud, H.R. & B. Jeanrenaud. 1979. Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 105: 146 – 151.en_US
dc.identifier.citedreferenceLee, N.K., H. Sowa, E. Hinoi, et al. 2007. Endocrine regulation of energy metabolism by the skeleton. Cell 130: 456 – 469.en_US
dc.identifier.citedreferenceFerron, M.F., E. Hinoi, G. Karsenty & P. Ducy. 2008. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc. Natl. Acad. Sci. USA 105: 5266 – 5270.en_US
dc.identifier.citedreferenceYang, X., K. Matsuda, P. Bialek, et al. 2004. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 117: 387 – 398.en_US
dc.identifier.citedreferenceHay, C.W. & K. Docherty. 2006. Comparative analysis of insulin gene promoters: implications for diabetes research. Diabetes 55: 3201 – 3213.en_US
dc.identifier.citedreferenceMayr, B. & M. Montminy. 2001. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2: 599 – 609.en_US
dc.identifier.citedreferenceKim, H.I., J.Y. Cha, S.Y. Kim, et al. 2002. Peroxisomal proliferator-activated receptor-gamma upregulates glucokinase gene expression in beta-cells. Diabetes 51: 676 – 685.en_US
dc.identifier.citedreferenceFriedman, J.M. & J.L. Halaas. 1998. Leptin and the regulation of body weight in mammals. Nature 395: 763 – 770.en_US
dc.identifier.citedreferenceElmquist, J.K., E. Maratos-Flier, C.B. Saper & J.S. Flier. 1998. Unraveling the central nervous system pathways underlying responses to leptin. Nat. Neurosci. 1: 445 – 450.en_US
dc.identifier.citedreferenceKarsenty, G. 2006. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab. 4: 341 – 348.en_US
dc.identifier.citedreferenceRosen, C.J. 2008. Bone remodeling, energy metabolism, and the molecular clock. Cell Metab. 7: 7 – 10.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.