Show simple item record

Quantitative prediction of in vivo inhibitory interactions involving glucuronidated drugs from in vitro data: the effect of fluconazole on zidovudine glucuronidation

dc.contributor.authorUchaipichat, Verawanen_US
dc.contributor.authorWinner, Leanne K.en_US
dc.contributor.authorMackenzie, Peter I.en_US
dc.contributor.authorElliot, David J.en_US
dc.contributor.authorWilliams, J. Andrewen_US
dc.contributor.authorMiners, John O.en_US
dc.date.accessioned2010-06-01T19:32:54Z
dc.date.available2010-06-01T19:32:54Z
dc.date.issued2006-04en_US
dc.identifier.citationUchaipichat, Verawan; Winner, Leanne K.; Mackenzie, Peter I.; Elliot, David J.; Williams, J Andrew; Miners, John O. (2006). "Quantitative prediction of in vivo inhibitory interactions involving glucuronidated drugs from in vitro data: the effect of fluconazole on zidovudine glucuronidation." British Journal of Clinical Pharmacology 61(4): 427-439. <http://hdl.handle.net/2027.42/72685>en_US
dc.identifier.issn0306-5251en_US
dc.identifier.issn1365-2125en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72685
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16542204&dopt=citationen_US
dc.description.abstractUsing the fluconazole–zidovudine (AZT) interaction as a model, to determine whether inhibition of UDP–glucuronosyltransferase (UGT) catalysed drug metabolism in vivo could be predicted quantitatively from in vitro kinetic data generated in the presence and absence bovine serum albumin (BSA). Methods Kinetic constants for AZT glucuronidation were generated using human liver microsomes (HLM) and recombinant UGT2B7, the principal enzyme responsible for AZT glucuronidation, as the enzyme sources with and without fluconazole. K i values were used to estimate the decrease in AZT clearance in vivo . Results Addition of BSA (2%) to incubations decreased the K m values for AZT glucuronidation by 85–90% for the HLM (923 ± 357 to 91 ± 9 µm) and UGT2B7 (478–70 µm) catalysed reactions, with little effect on V max . Fluconazole, which was shown to be a selective inhibitor of UGT2B7, competitively inhibited AZT glucuronidation by HLM and UGT2B7. Like the K m , BSA caused an 87% reduction in the K i for fluconazole inhibition of AZT glucuronidation by HLM (1133 ± 403 to 145 ± 36 µm) and UGT2B7 (529 to 73 µm). K i values determined for fluconazole using HLM and UGT2B7 in the presence (but not absence) of BSA predicted an interaction in vivo . The predicted magnitude of the interaction ranged from 41% to 217% of the reported AUC increase in patients, depending on the value of the in vivo fluconazole concentration employed in calculations. Conclusions K i values determined under certain experimental conditions may quantitatively predict inhibition of UGT catalysed drug glucuronidation in vivo .en_US
dc.format.extent312778 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2006 The Authors; Journal compilation; © 2006 Blackwell Publishing Ltden_US
dc.subject.otherDrug Interactionsen_US
dc.subject.otherFluconazoleen_US
dc.subject.otherGlucoronidationen_US
dc.subject.otherIn Vitro-in Vivo Correlationen_US
dc.subject.otherUDP-glucuronosyltransferaseen_US
dc.subject.otherZidovudineen_US
dc.titleQuantitative prediction of in vivo inhibitory interactions involving glucuronidated drugs from in vitro data: the effect of fluconazole on zidovudine glucuronidationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationotherPharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Ann Arbor, MI, USAen_US
dc.identifier.pmid16542204en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72685/1/j.1365-2125.2006.02588.x.pdf
dc.identifier.doi10.1111/j.1365-2125.2006.02588.xen_US
dc.identifier.sourceBritish Journal of Clinical Pharmacologyen_US
dc.identifier.citedreferenceHalkin H, Katzir I, Kurman I, Jan J, Malkin BB. Preventing drug interactions by online prescription screening in community pharmacies and medical practices. Clin Pharmacol Ther 2001; 69: 260 – 5.en_US
dc.identifier.citedreferenceLin JH. Sense and nonsense in the prediction of drug–drug interactions. Curr Drug Metab 2000; 1: 305 – 31.en_US
dc.identifier.citedreferenceHouston JB. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol 1994; 47: 1469 – 79.en_US
dc.identifier.citedreferenceIto K, Iwatsubo T, Kanamitsu S, Nakajima Y, Sugiyama Y. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu Rev Pharmacol Toxicol 1998; 38: 461 – 99.en_US
dc.identifier.citedreferenceIto K, Iwatsubo T, Kanamitsu S, Ueda K, Suzuki H, Sugiyama Y. Prediction of pharmacokinetic alterations caused by drug–drug interactions: metabolic interaction in the liver. Pharmacol Rev 1998; 50: 387 – 412.en_US
dc.identifier.citedreferencevon Moltke LL, Greenblatt DJ, Schmider J, Wright CE, Harmatz JS, Shader RI. In vitro approaches to predicting drug interactions in vivo. Biochem Pharmacol 1998; 55: 113 – 22.en_US
dc.identifier.citedreferenceYuan R, Parmelee T, Balian JD, Uppoor RS, Ajayi F, Burnett A, Lesko LJ, Marroum P. In vitro metabolic interaction studies: experience of the Food and Drug Administration. Clin Pharmacol Ther 1999; 66: 9 – 15.en_US
dc.identifier.citedreferenceSchmider J, von Moltke LL, Shader RI, Harmatz JS, Greenblatt DJ. Extrapolating in vitro data on drug metabolism to in vivo pharmacokinetics: evaluation of the pharmacokinetic interaction between amitriptyline and fluoxetine. Drug Metab Rev 1999; 31: 545 – 60.en_US
dc.identifier.citedreferenceKomatsu K, Ito K, Nakajima Y, Kanamitsu S, Imaoka S, Funae Y, Green CE, Tyson CA, Shimada N, Sugiyama Y. Prediction of in vivo drug–drug interactions between tolbutamide and various sulfonamides in humans based on in vitro experiments. Drug Metab Dispos 2000; 28: 475 – 81.en_US
dc.identifier.citedreferenceYao C, Levy RH. Inhibition-based metabolic drug–drug interactions: predictions from in vitro data. J Pharm Sci 2002; 91: 1923 – 35.en_US
dc.identifier.citedreferenceIto K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug–drug interactions from in vitro data. Br J Clin Pharmacol 2004; 57: 473 – 86.en_US
dc.identifier.citedreferenceMiners JO, Smith PA, Sorich MJ, McKinnon RA, Mackenzie PI. Predicting human drug glucuronidation parameters: application of in vitro and in silico modelling approaches. Annu Rev Pharmacol Toxicol 2004; 44: 1 – 25.en_US
dc.identifier.citedreferenceMiners JO, Mackenzie PI. Drug glucuronidation in humans. Pharmacol Ther 1991; 51: 347 – 69.en_US
dc.identifier.citedreferenceWilliams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE. Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUC i /AUC) ratios. Drug Metab Dispos 2004; 32: 1201 – 8.en_US
dc.identifier.citedreferenceKlecker RW Jr, Collins JM, Yarchoan R, Thomas R, Jenkins JF, Broder S, Myers CE. Plasma and cerebrospinal fluid pharmacokinetics of 3′-azido-3′-deoxythymidine: a novel pyrimidine analog with potential application for the treatment of patients with AIDS and related diseases. Clin Pharmacol Ther 1987; 41: 407 – 12.en_US
dc.identifier.citedreferenceBlum MR, Liao SH, Good SS, de Miranda P. Pharmacokinetics and bioavailability of zidovudine in humans. Am J Med 1988; 85: 189 – 94.en_US
dc.identifier.citedreferenceStagg MP, Cretton EM, Kidd L, Diasio RB, Sommadossi JP. Clinical pharmacokinetics of 3′-azido-3′-deoxythymidine (zidovudine) and catabolites with formation of a toxic catabolite, 3′-amino-3′-deoxythymidine. Clin Pharmacol Ther 1992; 51: 668 – 76.en_US
dc.identifier.citedreferenceSahai J, Gallicano K, Pakuts A, Cameron DW. Effect of fluconazole on zidovudine pharmacokinetics in patients infected with human immunodeficiency virus. J Infect Dis 1994; 169: 1103 – 7.en_US
dc.identifier.citedreferenceBoase S, Miners JO. In vitro–in vivo correlations for drugs eliminated by glucuronidation: investigations with the model substrate zidovudine. Br J Clin Pharmacol 2002; 54: 493 – 503.en_US
dc.identifier.citedreferenceCourt MH, Krishnaswamy S, Hao Q, Duan SX, Patten CJ, Von Moltke LL, Greenblatt DJ. Evaluation of 3′-azido-3′-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab Dispos 2003; 31: 1125 – 33.en_US
dc.identifier.citedreferenceLudden LK, Ludden TM, Collins JM, Pentikis HS, Strong JM. Effect of albumin on the estimation, in vitro, of phenytoin Vmax and Km values: implications for clinical correlation. J Pharmacol Exp Ther 1997; 282: 391 – 6.en_US
dc.identifier.citedreferenceCarlile DJ, Hakooz N, Bayliss MK, Houston JB. Microsomal prediction of in vivo clearance of CYP2C9 substrates in humans. Br J Clin Pharmacol 1999; 47: 625 – 35.en_US
dc.identifier.citedreferenceTang C, Lin Y, Rodrigues AD, Lin JH. Effect of albumin on phenytoin and tolbutamide metabolism in human liver microsomes: an impact more than protein binding. Drug Metab Dispos 2002; 30: 648 – 54.en_US
dc.identifier.citedreferenceBowalgaha K, Elliot DJ, Mackenzie PI, Knights KM, Swedmark S, Miners JO. Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen. Br J Clin Pharmacol 2005; 60: 423 – 33.en_US
dc.identifier.citedreferenceSorich MJ, Smith PA, McKinnon RA, Miners JO. Pharmacophore and quantitative structure activity relationship modelling of UDP-glucuronosyltransferase 1A1 (UGT1A1) substrates. Pharmacogenetics 2002; 12: 635 – 45.en_US
dc.identifier.citedreferenceStone AN, Mackenzie PI, Galetin A, Houston JB, Miners JO. Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human udp-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7. [erratum appears in Drug Metab Dispos. 2003; 31: 1541]. Drug Metab Dispos 2003; 31: 1086 – 9.en_US
dc.identifier.citedreferenceUchaipichat V, Mackenzie PI, Guo XH, Gardener-Stephen D, Galetin A, Houston JB, Miners JO. Human UDP-glucuronosyltransferases. Isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by diclofenac and probenecid. Drug Metab Dispos 2004; 32: 413 – 23.en_US
dc.identifier.citedreferenceMiners JO, Lillywhite KJ, Matthews AP, Jones ME, Birkett DJ. Kinetic and inhibitor studies of 4-methylumbelliferone and 1-naphthol glucuronidation in human liver microsomes. Biochem Pharmacol 1988; 37: 665 – 71.en_US
dc.identifier.citedreferenceBreyer-Pfaff U, Becher B, Nusser E, Nill K, Baier-Weber B, Zaunbrecher D, Wachsmuth H, Prox A. Quaternary N-glucuronides of 10-hydroxylated amitriptyline metabolites in human urine. Xenobiotica 1990; 20: 727 – 38.en_US
dc.identifier.citedreferenceUchaipichat V, Mackenzie PI, Elliot DJ, Miners JO. Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine and sulfinpyrazone) ‘probes’ for human UDP-glucuronosyltransferases. Drug Metab Dispos; in press.en_US
dc.identifier.citedreferenceMcLure JA, Miners JO, Birkett DJ. Nonspecific binding of drugs to human liver microsomes. Br J Clin Pharmacol 2000; 49: 453 – 61.en_US
dc.identifier.citedreferenceRoberts MS, Rowland M. Correlation between in-vitro microsomal enzyme activity and whole organ hepatic elimination kinetics: analysis with a dispersion model. J Pharm Pharmacol 1986; 38: 177 – 81.en_US
dc.identifier.citedreferenceLuzier A, Morse GD. Intravascular distribution of zidovudine: role of plasma proteins and whole blood components. Antiviral Res 1993; 21: 267 – 80.en_US
dc.identifier.citedreferenceDebruyne D, Ryckelynck JP. Clinical pharmacokinetics of fluconazole. Clin Pharmacokinet 1993; 24: 10 – 27.en_US
dc.identifier.citedreferenceDeMuria D, Forrest A, Rich J, Scavone JM, Cohen LG, Kazanjian PH. Pharmacokinetics and bioavailability of fluconazole in patients with AIDS. Antimicrob Agents Chemother 1993; 37: 2187 – 92.en_US
dc.identifier.citedreferenceBrammer KW, Coakley AJ, Jezequel SG, Tarbit MH. The disposition and metabolism of [14C]fluconazole in humans. Drug Metab Dispos 1991; 19: 764 – 7.en_US
dc.identifier.citedreferenceKlecker RW, Collins JM. Stereoselective metabolism of fenoldopam and its metabolites in human liver microsomes, cytosol, and slices. J Cardiovasc Pharmacol 1997; 30: 69 – 74.en_US
dc.identifier.citedreferenceTrapnell CB, Klecker RW, Jamis-Dow C, Collins JM. Glucuronidation of 3′-azido-3′-deoxythymidine (zidovudine) by human liver microsomes: relevance to clinical pharmacokinetic interactions with atovaquone, fluconazole, methadone, and valproic acid. Antimicrob Agents Chemother 1998; 42: 1592 – 6.en_US
dc.identifier.citedreferenceMistry M, Houston JB. Glucuronidation in vitro and in vivo. Comparison of intestinal and hepatic conjugation of morphine, naloxone, and buprenorphine. Drug Metab Dispos 1987; 15: 710 – 7.en_US
dc.identifier.citedreferenceSoars MG, Burchell B, Riley RJ. In vitro analysis of human drug glucuronidation and prediction of in vivo metabolic clearance. J Pharmacol Exp Ther 2002; 301: 382 – 90.en_US
dc.identifier.citedreferenceKanamitsu S, Ito K, Sugiyama Y. Quantitative prediction of in vivo drug–drug interactions from in vitro data based on physiological pharmacokinetics: use of maximum unbound concentration of inhibitor at the inlet to the liver. Pharm Res 2000; 17: 336 – 43.en_US
dc.identifier.citedreferenceZhou Q, Matsumoto S, Ding LR, Fischer NE, Inaba T. The comparative interaction of human and bovine serum albumins with CYP2C9 in human liver microsomes. Life Sci 2004; 75: 2145 – 55.en_US
dc.identifier.citedreferenceOhta Y, Fukushima S, Yamashita N, Niimi T, Kubota T, Akizawa E, Koiwai O. UDP-glucuronosyltransferase1A1 directly binds to albumin. Hepatol Res 2005; 31: 241 – 5.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.