Show simple item record

Plant species richness, elevated CO 2 , and atmospheric nitrogen deposition alter soil microbial community composition and function

dc.contributor.authorChung, Haegeunen_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorReich, Peter B.en_US
dc.contributor.authorEllsworth, David S.en_US
dc.date.accessioned2010-06-01T19:33:22Z
dc.date.available2010-06-01T19:33:22Z
dc.date.issued2007-05en_US
dc.identifier.citationCHUNG, HAEGEUN; ZAK, DONALD R.; REICH, PETER B.; ELLSWORTH, DAVID S. (2007). "Plant species richness, elevated CO 2 , and atmospheric nitrogen deposition alter soil microbial community composition and function." Global Change Biology 13(5): 980-989. <http://hdl.handle.net/2027.42/72693>en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72693
dc.description.abstractWe determined soil microbial community composition and function in a field experiment in which plant communities of increasing species richness were exposed to factorial elevated CO 2 and nitrogen (N) deposition treatments. Because elevated CO 2 and N deposition increased plant productivity to a greater extent in more diverse plant assemblages, it is plausible that heterotrophic microbial communities would experience greater substrate availability, potentially increasing microbial activity, and accelerating soil carbon (C) and N cycling. We, therefore, hypothesized that the response of microbial communities to elevated CO 2 and N deposition is contingent on the species richness of plant communities. Microbial community composition was determined by phospholipid fatty acid analysis, and function was measured using the activity of key extracellular enzymes involved in litter decomposition. Higher plant species richness, as a main effect, fostered greater microbial biomass, cellulolytic and chitinolytic capacity, as well as the abundance of saprophytic and arbuscular mycorrhizal (AM) fungi. Moreover, the effect of plant species richness on microbial communities was significantly modified by elevated CO 2 and N deposition. For instance, microbial biomass and fungal abundance increased with greater species richness, but only under combinations of elevated CO 2 and ambient N, or ambient CO 2 and N deposition. Cellobiohydrolase activity increased with higher plant species richness, and this trend was amplified by elevated CO 2 . In most cases, the effect of plant species richness remained significant even after accounting for the influence of plant biomass. Taken together, our results demonstrate that plant species richness can directly regulate microbial activity and community composition, and that plant species richness is a significant determinant of microbial response to elevated CO 2 and N deposition. The strong positive effect of plant species richness on cellulolytic capacity and microbial biomass indicate that the rates of soil C cycling may decline with decreasing plant species richness.en_US
dc.format.extent178052 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2007 Blackwell Publishing Ltden_US
dc.subject.otherComplementary Resource Useen_US
dc.subject.otherExtracellular Enzymesen_US
dc.subject.otherFACE (Free-air Carbon Dioxide Enrichment)en_US
dc.subject.otherGlobal Changeen_US
dc.subject.otherGrassland Ecosystemen_US
dc.subject.otherMicrobial Biomassen_US
dc.subject.otherPhospholipid Fatty Acid (PLFA)en_US
dc.subject.otherPlant Diversityen_US
dc.subject.otherSoil C Cyclingen_US
dc.subject.otherSoil Fungien_US
dc.titlePlant species richness, elevated CO 2 , and atmospheric nitrogen deposition alter soil microbial community composition and functionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources & Environment, 440 Church Street, University of Michigan, Ann Arbor, MI 48109, USA ,en_US
dc.contributor.affiliationum† Department of Ecology and Evolutionary Biology, 830 North University Avenue, University of Michigan, Ann Arbor, MI 48109, USA ,en_US
dc.contributor.affiliationother† Department of Forest Resources, 1530 Cleveland Avenue, University of Minnesota, St Paul, MN 55108, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72693/1/j.1365-2486.2007.01313.x.pdf
dc.identifier.doi10.1111/j.1365-2486.2007.01313.xen_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceBardgett RD, Hobbs PJ, FrostegÅrd Å ( 1996 ) Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils, 22, 261 – 264.en_US
dc.identifier.citedreferenceBardgett RD, Lovell RD, Hobbs PJ et al. ( 1999 ) Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biology & Biochemistry, 31, 1021 – 1030.en_US
dc.identifier.citedreferenceCarreiro MM, Sinsabaugh Rl, Repert DA et al. ( 2000 ) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359 – 2365.en_US
dc.identifier.citedreferenceCatovsky S, Bradford MA, Hector A ( 2002 ) Biodiversity and ecosystem productivity: implications for carbon storage. Oikos, 97, 443 – 448.en_US
dc.identifier.citedreferenceChapin FS III, Zavaleta ES, Eviner VT et al. ( 2000 ) Consequences of changing biodiversity. Nature, 405, 234 – 242.en_US
dc.identifier.citedreferenceCraine JM, Reich PB, Tilman GD et al. ( 2003a ) The role of plant species in biomass production and response to elevated CO 2 and N. Ecology Letters, 6, 623 – 630.en_US
dc.identifier.citedreferenceCraine JM, Wedin DA, Chapin FS III et al. ( 2003b ) Relationship between the structure of root systems and resource use for 11 North American grassland plants. Plant Ecology, 165, 85 – 100.en_US
dc.identifier.citedreferenceDijkstra FA, Hobbie SE, Reich PB ( 2006 ) Soil processes affected by 16 grassland species grown under different environmental conditions. Soil Science Society of America Journal, 70, 770 – 777.en_US
dc.identifier.citedreferenceDijkstra FA, Hobbie SE, Reich PB et al. ( 2005 ) Divergent effects of elevated CO 2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. Plant and Soil, 272, 41 – 52.en_US
dc.identifier.citedreferenceFalkengren-Grerup U ( 1998 ) N response of herbs and graminoids in experiments with simulated acid soil solution. Environmental Pollution, 102, 93 – 99.en_US
dc.identifier.citedreferenceFenn ME, Poth MA, Aber JD et al. ( 1998 ) N excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8, 706 – 733.en_US
dc.identifier.citedreferenceFrostegÅrd Å, Tunlid A, BÅath E ( 1993 ) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology & Biochemistry, 25, 723 – 730.en_US
dc.identifier.citedreferenceGalloway JN, Schlesinger WH, Levy H II et al. ( 1995 ) Nitrogen fixation: anthropogenic enhancement-environmental response. Global Biogeochemical cycles, 9, 235 – 252.en_US
dc.identifier.citedreferenceGarbeva P, Postma J, van Veen JA et al. ( 2006 ) Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environmental Microbiology, 8, 233 – 246.en_US
dc.identifier.citedreferenceGehron MJ, White DC ( 1983 ) Sensitive assay of phospholipid glycerol in environmental samples. Journal of Microbiological Methods, 1, 23 – 32.en_US
dc.identifier.citedreferenceGrayston SJ, Griffith GS, Mawdsley JL et al. ( 2001 ) Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biology & Biochemistry, 33, 533 – 551.en_US
dc.identifier.citedreferenceGuckert JB, Antworth CP, Nichols PD et al. ( 1985 ) Phospholipid, ester-linked fatty acid profiles as reproducible assays for change in prokaryotic community structure of estuarine sediments. FEMS Microbiology Ecology, 31, 147 – 158.en_US
dc.identifier.citedreferenceHe J, Bazzaz FA, Schmid B ( 2002 ) Interactive effects of diversity, nutrients and elevated CO 2 on experimental plant communities. Oikos, 97, 337 – 348.en_US
dc.identifier.citedreferenceHector A, Schmid B, Beierkuhnlein C et al. ( 1999 ) Plant diversity and productivity experiments in European grasslands. Science, 286, 1123 – 1127.en_US
dc.identifier.citedreferenceHenry HAL, Juarez JD, Field CB et al. ( 2005 ) Interactive effects of elevated CO 2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland. Global Change Biology, 11, 1808 – 1815.en_US
dc.identifier.citedreferenceHorz H-P, Barbrook A, Field CB et al. ( 2004 ) Ammonia-oxidizing bacteria respond to multifactorial global change. Proceedings of National Academy of Science, 101, 15136 – 15141.en_US
dc.identifier.citedreferenceHorz H-P, Rich V, Avrahami S et al. ( 2005 ) Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. Applied and Environmental Microbiology, 71, 2642 – 2652.en_US
dc.identifier.citedreferenceJohnson D, Leake JR, Lee JA et al. ( 1998 ) Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands. Environmental Pollution, 103, 239 – 250.en_US
dc.identifier.citedreferenceKeyser P, Kirk T, Zeikus JG ( 1978 ) Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. Journal of Bacteriology, 135, 790 – 797.en_US
dc.identifier.citedreferenceKirk TK, Farrell RL ( 1987 ) Enzymatic “combustion”: the microbial degradation of lignin. Annual Review of Microbiology, 41, 465 – 505.en_US
dc.identifier.citedreferenceKowalchuk GA, Buma DS, de Boer W et al. ( 2002 ) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie van Leeuwenhoek, 81, 509 – 520.en_US
dc.identifier.citedreferenceKÖrner C ( 2000 ) Biosphere responses to CO 2 enrichment. Ecological Applications, 10, 1590 – 1619.en_US
dc.identifier.citedreferenceLee TD, Tjoelker MG, Ellsworth DS et al. ( 2001 ) Leaf gas exchange responses of 13 prairie grassland species to elevated CO 2 and increased nitrogen supply. New Phytologist, 150, 405 – 418.en_US
dc.identifier.citedreferenceLoreau M ( 2001 ) Microbial diversity, producer–decomposer interactions and ecosystem processes: a theoretical model. Proceedings of the Royal Society of London, 268, 303 – 309.en_US
dc.identifier.citedreferenceLoreau M, Naeem S, Inchausti P et al. ( 2001 ) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804 – 808.en_US
dc.identifier.citedreferenceLynd LR, Weimer PJ, van Zyl WH et al. ( 2002 ) Microbial cellulose utilization: fundaments and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506 – 577.en_US
dc.identifier.citedreferenceMadan R, Pankhurst C, Hawke B et al. ( 2002 ) Use of fatty acids for identification of AM fungi and estimation of biomass of AM spores in soil. Soil Biology & Biochemistry, 34, 125 – 128.en_US
dc.identifier.citedreferenceMatson PA, Parton WJ, Power AG et al. ( 1997 ) Agricultural intensification and ecosystem properties. Science, 277, 504 – 509.en_US
dc.identifier.citedreferenceMelillo JM, McGuire AD, Kicklighter DW et al. ( 1993 ) Global climate change and terrestrial net primary production. Nature, 363, 234 – 240.en_US
dc.identifier.citedreferenceMiller M, Palojarvi A, Rangger A et al. ( 1998 ) The use of fluorogenic substrates to measure fungal presence and activity in soil. Applied Environmental Microbiology, 64, 613 – 617.en_US
dc.identifier.citedreferenceNaeem S ( 2002 ) Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology, 83, 1537 – 1552.en_US
dc.identifier.citedreferenceNavas M, Garnier E, Austin MP et al. ( 1999 ) Effect of competition on the responses of grasses and legumes to elevated atmospheric CO 2 along a nitrogen gradient: differences between isolated plants, monocultures and multi-species mixtures. New Phytologist, 143, 323 – 331.en_US
dc.identifier.citedreferenceNeftel A, Moor E, Oeschger H et al. ( 1985 ) Evidence from polar ice cores for the increase in atmospheric CO 2 in the past two centuries. Nature, 315, 45 – 47.en_US
dc.identifier.citedreferenceNiklaus PA, Leadley PW, Schmid B et al. ( 2001a ) A long-term field study in biodiversity × elevated CO 2 interactions in grassland. Ecological Monographs, 71, 341 – 356.en_US
dc.identifier.citedreferenceNiklaus PA, Leadley PW, Schmid B et al. ( 2001b ) A link between plant diversity, elevated CO 2 and soil nitrate. Oecologia, 127, 540 – 548.en_US
dc.identifier.citedreferenceNorby RJ ( 1998 ) Nitrogen deposition: a component of global change analysis. New Phytologist, 139, 189 – 200.en_US
dc.identifier.citedreferenceNorby RJ, Cotrufo MF, Ineson P et al. ( 2001 ) Elevated CO 2, litter chemistry, and decomposition: a synthesis. Oecologia, 127, 153 – 165.en_US
dc.identifier.citedreferenceNowak RS, Ellsworth DS, Smith SD ( 2004 ) Functional responses of plants to elevated atmospheric CO 2 – do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 162, 253 – 280.en_US
dc.identifier.citedreferenceOlander LP, Vitousek PM ( 2000 ) Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49, 175 – 190.en_US
dc.identifier.citedreferenceOlsson PA ( 1999 ) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology, 29, 303 – 310.en_US
dc.identifier.citedreferenceOlsson PA, Larsson L, Bago B et al. ( 2003 ) Ergosterol and fatty acids for biomass estimation of mycorrhizal fungi. New Phytologist, 159, 1 – 10.en_US
dc.identifier.citedreferencePaul EA, Clark FE ( 1996 ) Soil Microbiology and Biochemistry. Academic Press, San Diego, CA, USA.en_US
dc.identifier.citedreferencePennanen T, Fritze H, Vanhala P et al. ( 1998 ) Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain. Applied and Environmental Microbiology, 64, 2173 – 2180.en_US
dc.identifier.citedreferencePhillips DA, Fox TC, Six J ( 2006 ) Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO 2. Global Change Biology, 12, 561 – 567.en_US
dc.identifier.citedreferencePimm SL, Russell GJ, Gittleman JL et al. ( 1995 ) The future of biodiversity. Science, 269, 347 – 350.en_US
dc.identifier.citedreferenceReich PB, Knops J, Tilman D et al. ( 2001a ) Plant diversity enhances ecosystem responses to elevated CO 2 and N deposition. Nature, 410, 809 – 812.en_US
dc.identifier.citedreferenceReich PB, Tilman D, Craine J et al. ( 2001b ) Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO 2 and N availability regimes? A field test with 16 grassland species. New Phytologist, 150, 435 – 448.en_US
dc.identifier.citedreferenceReich PB, Tilman D, Naeem S et al. ( 2004 ) Species and functional group diversity independently influence biomass accumulation and its response to CO 2 and N. Proceedings of National Academy of Science, 101, 10101 – 10106.en_US
dc.identifier.citedreferenceSaiya-Cork KR, Sinsabaugh RL, Zak DR ( 2002 ) The effects of long term N deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309 – 1315.en_US
dc.identifier.citedreferenceShaw MR, Zavaleta ES, Chiariello NR et al. ( 2002 ) Grassland responses to global environmental changes are suppressed by elevated CO 2. Science, 298, 1987 – 1990.en_US
dc.identifier.citedreferenceSmith RS, Shiel RS, Bardgett RD et al. ( 2003 ) Soil microbial community, fertility, vegetation and diversity as targets in the restoration management of a meadow grassland. Journal of Applied Ecology, 40, 51 – 64.en_US
dc.identifier.citedreferenceSpehn EM, Joshi J, Schmid B et al. ( 2000 ) Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant and Soil, 224, 217 – 230.en_US
dc.identifier.citedreferenceStahl PD, Klug MJ ( 1996 ) Characterization and differentiation of filamentous fungi based on fatty acid composition. Applied and Environmental Microbiology, 62, 4136 – 4146.en_US
dc.identifier.citedreferenceTilman D ( 1999 ) The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80, 1455 – 1474.en_US
dc.identifier.citedreferenceTilman D, Reich PB, Knops J et al. ( 2001 ) Diversity and productivity in a long-term grassland experiment. Science, 294, 843 – 845.en_US
dc.identifier.citedreferenceTilman D, Wedin D, Knops J ( 1996 ) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718 – 720.en_US
dc.identifier.citedreferenceVitousek PM ( 1994 ) Beyond global warming: ecology and global change. Ecology, 75, 1861 – 1876.en_US
dc.identifier.citedreferenceWhite DC, Davis WM, Nickels JS et al. ( 1979 ) Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia, 40, 51 – 62.en_US
dc.identifier.citedreferenceWolf J, Johnson NC, Rowland DL et al. ( 2003 ) Elevated CO 2 and plant species richness impact arbuscular mycorrhizal fungal spore communities. New Phytologist, 157, 579 – 588.en_US
dc.identifier.citedreferenceZak DR, Holmes WE, White DC et al. ( 2003 ) Plant diversity, microbial communities, and ecosystem function: are there any links? Ecology, 84, 2042 – 2050.en_US
dc.identifier.citedreferenceZavaleta ES, Shaw MR, Chiariello NR et al. ( 2003 ) Grassland responses to three years of elevated temperature, CO 2, precipitation, and N deposition. Ecological Monographs, 73, 585 – 604.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.