Show simple item record

Is Environmental Improvement in Automotive Component Design Highly Constrained?

dc.contributor.authorKeoleian, Gregory A.en_US
dc.date.accessioned2010-06-01T19:38:43Z
dc.date.available2010-06-01T19:38:43Z
dc.date.issued1998-04en_US
dc.identifier.citationKeoleian, Gregory A. (1998). "Is Environmental Improvement in Automotive Component Design Highly Constrained?." Journal of Industrial Ecology 2(2): 103-118. <http://hdl.handle.net/2027.42/72780>en_US
dc.identifier.issn1088-1980en_US
dc.identifier.issn1530-9290en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72780
dc.description.abstractThis article investigates the influence of environmental, cost, and performance requirements on the design and management of automotive components through a case study involving instrument panels. To address the question of whether the environmental improvement of an instrument panel (IP) is highly constrained, a lifecycle inventory analysis is used to characterize the major environmental burdens associated with a generic IP defined from an average of three midsized vehicle models. A life-cycle cost analysis is also conducted to understand the market forces operating in the domains of the original equipment manufacturer; consumer; and end-of-life (EOL) vehicle managen. This study indicates that the existing set of environmental requirements, in conjunction with current cost drivers and the large set of manufacturing and use phase functional performance requirements, highly constrain opportunities for environmental improvement Specific improvement strategies-lightweighting, elimination of the painting operation, and reduction in material complexity-are examined in the context of existing system requirements. The near-term forecast for improvements is not optimistic. Innovation will continue in a slow and piecemeal fashion until requirements affecting the total vehicle system are significantly changeden_US
dc.format.extent1028943 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMIT Pressen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rights1998 Massachusetts Institute of Technology and Yale Universityen_US
dc.subject.otherAutomotive Component Designen_US
dc.subject.otherEnvironmental Improvementen_US
dc.subject.otherInstrument Panelen_US
dc.subject.otherLifecycle Designen_US
dc.subject.otherMukiobjective Decisionmakingen_US
dc.subject.otherSystem Analysisen_US
dc.titleIs Environmental Improvement in Automotive Component Design Highly Constrained?en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumNational Pollution Prevention Center for Higher Education, School of Natural Resources and Environmentm University of Michigan, Ann Arbor, MI, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72780/1/jiec.1998.2.2.103.pdf
dc.identifier.doi10.1162/jiec.1998.2.2.103en_US
dc.identifier.sourceJournal of Industrial Ecologyen_US
dc.identifier.citedreferenceAAMA (American Automobile Manufacturers Association). 1995. Motor vehicle facts and figures. Detroit, MI.en_US
dc.identifier.citedreferenceAmerican Metal Market. 1996. American Metal Market, 19 July, 6.en_US
dc.identifier.citedreferenceChapman, D., D. Evans, and J. Soncrant 1996. Design advantages and benefits of the Chrysler Dakota fully integrated thermoplastic instrument panel. SAE Technical Paper Series no. 960398. Warrendale, PA: SAE International, 1 – 5.en_US
dc.identifier.citedreferenceCurran, M. A. 1996. Environmental life-cycle assess-ment. New York: McGraw-Hill.en_US
dc.identifier.citedreferenceDeCicco, J. and M. Delucchi 1997. Transportation, energy, and environment: How far can technology take us? Washington, DC: American Council for an Energy-Efficient Economy.en_US
dc.identifier.citedreferenceFarrington, S. 1996. Textron. Personal communication. 9 August.en_US
dc.identifier.citedreferenceGraedel, T. E. and B. R. Allenby 1998. Industrial ecology and the automobile. Upper Saddle River, NJ: Prentice-Hall.en_US
dc.identifier.citedreferenceHarsch, M., P. Eyerer, M. Finkbeiner, and K. Saur 1997. Life-cycle engineering of automobile painting processes. SAE Technical Paper Series Warrendale, PA: SAE International, 155 – 166.en_US
dc.identifier.citedreferenceHiguchi, K. and K. Nakajima 1996. Closed loop recycling of magnesium PC housing. Symposium on Electronics and the Environment Dallas, Texas, 6–8 May, 102 – 108.en_US
dc.identifier.citedreferenceKar, K. and Keoleian, G. A. 1996. Application of life-cycle design to an intake manifold. SAE Technical Paper Series no. 960410. Warrendale, PA: SAE International, 1 – 16.en_US
dc.identifier.citedreferenceKeoleian, G. A. 1994. The application of life-cycle assessment to design. Journal of Cleaner Production 1 ( 3–4 ): 143 – 149.en_US
dc.identifier.citedreferenceKeoleian, G. A. 1995a. Life-cycle design criteria for engine oil filters: AlliedSignal case study. SAE Technical Paper Series no. 951849. Reprinted from Proceedings of the 1 995 Total Life-Cycle Conference. Vienna, Austria. 16–19 October, 109 – 119.en_US
dc.identifier.citedreferenceKeoleian, G. A. 1995b. Pollution prevention through life-cycle design Pollution Prevention Handbook New York: McGraw-Hill, 253 – 292.en_US
dc.identifier.citedreferenceKeoleian, G. A. and K. Kar 1998. Life-cycle design of air intake manifolds Cincinnati, OH: National Risk Management Research Laboratory, Office of Research and Development in press.en_US
dc.identifier.citedreferenceKeoleian, G. A. and D. Menerey 1993. Life-cycle design guidance manual: Environmental requirements and the product system Cincinnati, OH: Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. EPA.en_US
dc.identifier.citedreferenceKeoleian, G. A. and J. S. McDaniel 1997. Life-cycle design of instrument panels: A common sense approach. SAE International Congress and Exposition. Detroit, Michigan. 24 February. SAE Technical Paper Series no. 970695. Warrendale, PA: SAE International.en_US
dc.identifier.citedreferenceKeoleian, G. A., J. Koch, and D. Menerey 1995. Life-cycle design framework and demonstration projects: Profiles of AT&T and Allied Signaf. Cincinnati, OH: National Risk Management Research Laboratory, U.S. EPA.en_US
dc.identifier.citedreferenceKeoleian, G. A., K. Kar, M. Manion, and J. Bulkley 1997. Industrial ecology of the automobile: A life-cycle perspective Warrendale, PA: SAE International.en_US
dc.identifier.citedreferenceMcDaniel, J. S. 1997. Application of life-cycle assessment and design tools to instrument panels: Analysis for the Common Sense Initiative pilot project. University of Michigan, School of Natural Resources and Environment.en_US
dc.identifier.citedreferenceNPPC (National Pollution Prevention Center). 1997. Life-cycle inventory analysis of instrument panels: VOC emissions in manufacturing. Final subcommittee support document (March 27), prepared by the National Pollution Prevention Center, University of Michigan, for the U.S. EPA Common Sense Initiative Auto Manufacturing Sector Subcommittee, Life-Cycle Management/Supplier Partnership Project Team.en_US
dc.identifier.citedreferenceNational Research Council. 1992. Automotive fuel economy: How far should we go.? Committee on Fuel Economy of Automobiles and Light Trucks, Energy Engineering Board, Commission on Engineering and Technical Systems, National Research Council. Washington, DC: National Academy Press.en_US
dc.identifier.citedreferenceRepa, E. W. and A. Blakey 1996. Municipal solid waste disposal trends; 1996 update. Waste Age ( May ): 170 – 180.en_US
dc.identifier.citedreferenceSETAC (Society of Environmental Toxicology and Chemistry). 1993a. Workshop report – guidelines for life-cycle assessment: A code of practice. Sesimbra, Portugal. 31 March. Pensacola, FL.en_US
dc.identifier.citedreferenceSETAC. 1993b. A conceptual framework for life-cycle impact assessment. Pensacola, FL.en_US
dc.identifier.citedreferenceSullivan, J. L. and J. Hu 1995. Life-cycle energy analysis for automobiles. SAE Total Life Cycle Conference, Vienna, Austria. 16 October. SAE Technical Paper Series Warrendale, PA: SAE International.en_US
dc.identifier.citedreferenceU.S. EPA (U.S. Environmental Protection Agency). 1995. Life-cycle impact assessment: A conceptual framework, key issues, and summary of existing methods EPA-452/R-95-002. Research Triangle Park, NC: Office of Air Quality, U.S. EPA.en_US
dc.identifier.citedreferenceVigon, B. W., D. A. Tolle, B. W. Cornary, H. C. Latham, C. L. Harrison, T. L. Boguski, R. G. Hunt, and J. D. Sellers 1993. Life-cycle assessment: inventory guidelines and principles. Cincinnati, OH: U.S. EPA Risk Reduction Engineering Laboratory.en_US
dc.identifier.citedreferenceYoung, S. B. and W. H. Vanderburg 1994. Applying environmental life-cycle analysis to materials. Journal of the Minerals Metals and Materials Society 46 ( 4 ): 22 – 27.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.