Show simple item record

PHYLOGENY OF ACRIDOCARPUS-BRACHYLOPHON (MALPIGHIACEAE): IMPLICATIONS FOR TERTIARY TROPICAL FLORAS AND AFROASIAN BIOGEOGRAPHY

dc.contributor.authorDavis, Charles C.en_US
dc.contributor.authorBell, Charles D.en_US
dc.contributor.authorFritsch, Peter W.en_US
dc.contributor.authorMathews, Sarahen_US
dc.date.accessioned2010-06-01T19:39:50Z
dc.date.available2010-06-01T19:39:50Z
dc.date.issued2002-12en_US
dc.identifier.citationDavis, Charles C.; Bell, Charles D.; Fritsch, Peter W.; Mathews, Sarah (2002). "PHYLOGENY OF ACRIDOCARPUS-BRACHYLOPHON (MALPIGHIACEAE): IMPLICATIONS FOR TERTIARY TROPICAL FLORAS AND AFROASIAN BIOGEOGRAPHY." Evolution 56(12): 2395-2405. <http://hdl.handle.net/2027.42/72798>en_US
dc.identifier.issn0014-3820en_US
dc.identifier.issn1558-5646en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72798
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12583580&dopt=citationen_US
dc.description.abstractA major tenet of African Tertiary biogeography posits that lowland rainforest dominated much of Africa in the late Cretaceous and was replaced by xeric vegetation as a response to continental uplift and consequent widespread aridification beginning in the late Paleogene. The aridification of Africa is thought to have been a major factor in the extinction of many African humid-tropical lineages, and in the present-day disparity of species diversity between Africa and other tropical regions. This primarily geologically based model can be tested with independent phylogenetic evidence from widespread African plant groups containing both humid- and xeric-adapted species. We estimated the phylogeny and lineage divergence times within one such angiosperm group, the acridocarpoid clade (Malpighiaceae), with combined ITS, ndhF , and trnL-F data from 15 species that encompass the range of morphological and geographic variation within the group. Dispersal-vicariance analysis and divergence-time estimates suggest that the basal acridocarpoid divergence occurred between African and Southeast Asian lineages approximately 50 million years ago (mya), perhaps after a southward ancestral retreat from high-latitude tropical forests in response to intermittent Eocene cooling. Dispersion of Acridocarpus from Africa to Madagascar is inferred between approximately 50 and 35 mya, when lowland humid tropical forest was nearly continuous between these landmasses. A single dispersal event within Acridocarpus is inferred from western Africa to eastern Africa between approximately 23 and 17 mya, coincident with the widespread replacement of humid forests by savannas in eastern Africa. Although the spread of xeric environments resulted in the extinction of many African plant groups, our data suggest that for others it provided an opportunity for further diversification.en_US
dc.format.extent705192 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2002 The Society for the Study of Evolutionen_US
dc.subject.otherAfricaen_US
dc.subject.otherAridificationen_US
dc.subject.otherAsiaen_US
dc.subject.otherBiogeographyen_US
dc.subject.otherDispersal-vicariance Analysisen_US
dc.subject.otherEast African Rift Valleyen_US
dc.subject.otherMadagascaren_US
dc.subject.otherNonparametric Rate Smoothingen_US
dc.subject.otherPhylogenyen_US
dc.titlePHYLOGENY OF ACRIDOCARPUS-BRACHYLOPHON (MALPIGHIACEAE): IMPLICATIONS FOR TERTIARY TROPICAL FLORAS AND AFROASIAN BIOGEOGRAPHYen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan Herbarium, 3600 Varsity Drive, Ann Arbor, Michigan 48108-2287 E-mail: chdavis@umich.eduen_US
dc.contributor.affiliationotherDepartment of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut 06520 E-mail: charles.bell@yale.eduen_US
dc.contributor.affiliationotherDepartment of Botany, California Academy of Sciences, Golden Gate Park, San Francisco, California 94118 E-mail: pfritsch@calacademy.orgen_US
dc.contributor.affiliationotherDivision of Biological Sciences, University of Missouri, Columbia, Missouri 65211 E-mail: mathewss@missouri.eduen_US
dc.identifier.pmid12583580en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72798/1/j.0014-3820.2002.tb00165.x.pdf
dc.identifier.doi10.1111/j.0014-3820.2002.tb00165.xen_US
dc.identifier.sourceEvolutionen_US
dc.identifier.citedreferenceAnderson, W. R., and B. Gates. 1981. Barnebya, a new genus of Malpighiaceae from Brazil. Brittonia 33: 275 – 284.en_US
dc.identifier.citedreferenceArÈnes, J. 1957. RÉpartition gÉographique des MalpighiacÉes vivantes et fossiles (1). C. R. Somm. Seances Soc. Biogeogr. 290: 81 – 108.en_US
dc.identifier.citedreferenceAxelrod, D. I. 1972a. Ocean-floor spreading in relation to ecosystematic problems. Univ. Ark. Mus. Occas. Pap. 4: 15 – 68.en_US
dc.identifier.citedreference1972b. Edaphic aridity as a factor in Angiosperm evolution. Am. Nat. 106: 311 – 320.en_US
dc.identifier.citedreferenceAxelrod, D. I., and P. H. Raven. 1978. Late Cretaceous and Tertiary vegetation history of Africa. Pp. 77 – 130 in M. J. A. Werger, ed. Biogeography and ecology of southern Africa. Dr W. Junk bv Publishers, The Hague, The Netherlands.en_US
dc.identifier.citedreferenceBaker, B. H., P. A. Mohr, and L. A. J. Williams. 1972. Geology of the eastern rift system of Africa. Geol. Soc. Am. Spec. Pap. 136: 1 – 67.en_US
dc.identifier.citedreferenceBaldwin, B. G., and M. J. Sanderson. 1998. Age and rate diversification of the Hawaiian silversword alliance (Compositae). Proc. Natl. Acad. Sci. USA 95: 9402 – 9406.en_US
dc.identifier.citedreferenceBaum, D. A., R. L. Small, and J. F. Wendel. 1998. Biogeography and floral evolution of Baobabs ( Adansonia, Bombacaceae) as inferred from multiple data sets. Syst. Biol. 47: 181 – 207.en_US
dc.identifier.citedreferenceBartek, L. R., L. C. Sloan, J. B. Anderson, and M. I. Ross. 1992. Evidence from the Antarctic continental margin of late Paleogene ice sheets: a manifestation of plate reorganization and synchronous changes in atmospheric circulation over the emerging southern ocean ? Pp. 131 – 159 in D. R. Prothero and W. A. Berggren, eds. Eocene-Oligocene climatic and biotic evolution. Princeton Univ. Press, Princeton, NJ.en_US
dc.identifier.citedreferenceBerggren, W. A., and D. R. Prothero. 1992. Eocene-Oligocene climatic and biotic evolution: an overview. Pp. 1 – 28 in D. R. Prothero and W. A. Berggren, eds. Eocene-Oligocene climatic and biotic evolution. Princeton Univ. Press, Princeton, NJ.en_US
dc.identifier.citedreferenceBesse, J., and V. Courtillot. 1988. Paleographic maps of the continents bordering the Indian Ocean since the Early Jurassic. J. Geophys. Res. 93: 11791 – 11808.en_US
dc.identifier.citedreferenceCameron, K. M., M. W. Chase, W. R. Anderson, and H. G. Hills. 2001. Molecular systematics of Malpighiaceae: evidence from plastid rbcL and matK sequences. Am. J. Bot. 88: 1847 – 1862.en_US
dc.identifier.citedreferenceCampbell, C. S., M. F. Wojciechowski, B. G. Baldwin, L. A. Alice, and M. J. Donoghue. 1997. Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae). Mol. Biol. Evol. 14: 81 – 90.en_US
dc.identifier.citedreferenceChanderbali, A. S., H. van der Werff, and S. S. Renner. 2001. Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann. Mo. Bot. Gard. 88: 104 – 134.en_US
dc.identifier.citedreferenceDavis, C. C. 2002. Madagasikaria (Malpighiaceae): a new genus from Madagascar with implications for floral evolution in Mal-pighiaceae. Am. J. Bot. 89: 723 – 730.en_US
dc.identifier.citedreferenceDavis, C. C., W. R. Anderson, and M. J. Donoghue. 2001. Phy-logeny of Malpighiaceae: evidence from chloroplast ndhF and trnL-F nucleotide sequences. Am. J. Bot. 88: 1830 – 1846.en_US
dc.identifier.citedreferenceDavis, C. C., C. D. Bell, S. Mathews, and M. J. Donoghue. 2002a. Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. Proc. Natl. Acad. Sci. USA 99: 6833 – 6837.en_US
dc.identifier.citedreferenceDavis, C. C., P. W. Fritsch, J. Li, and M. J. Donoghue. 2002b. Phylogeny and biogeography of Cercis (Fabaceae): evidence from nuclear ribosomal ITS and chloroplast ndhF sequence data. Syst. Bot. 27: 289 – 302.en_US
dc.identifier.citedreferenceDonoghue, M. J., C. D. Bell, and J. Li. 2001. Phylogenetic patterns in northern hemisphere plant geography. Int. J. Plant Sci. 162: S41 – S52.en_US
dc.identifier.citedreferenceDoyle, J. A. and A. Le Thomas 1997. Phylogeny and geographic history of Annonacaeae. Geogr. Phys. Quat. 51: 353 – 361.en_US
dc.identifier.citedreferenceFarris, J. S., M. KÄllersjÖ, A. G. Kluge, and C. Bult. 1994. Testing significance of incongruence. Cladistics 10: 315 – 319.en_US
dc.identifier.citedreferenceFelsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368 – 376.en_US
dc.identifier.citedreference1985. Phylogenies and the comparative method. Am. Nat. 125: 1 – 15.en_US
dc.identifier.citedreferenceFritsch, P. W. 1999. Phylogeny of Styrax based on morphological characters, with implications for biogeography and infrageneric classification. Syst. Bot. 24: 356 – 378.en_US
dc.identifier.citedreference2001. Phylogeny and biogeography of the flowering plant genus Styrax (Styracaceae) based on chloroplast DNA restriction sites and DNA sequences of the internal transcribed spacer region. Mol. Phylogenet. Evol. 19: 387 – 408.en_US
dc.identifier.citedreferenceGermeraad, J. H., C. A. Hopping, and J. Muller. 1968. Palynology of Tertiary sediments from tropical areas. Rev. Palaeobot. Palynol. 6: 189 – 348.en_US
dc.identifier.citedreferenceGrove, A. T. 1978. Africa. 3rd ed. Oxford Univ. Press, London.en_US
dc.identifier.citedreferenceHably, L., and S. R. Manchester. 2000. Fruits of Tetrapterys (Malpighiaceae) from the Oligocene of Hungary and Slovenia. Rev. Paleobot. Palynol. 111: 93 – 101.en_US
dc.identifier.citedreferenceHall, R. 1996. Reconstructing Cenozoic Southeast Asia. Geol. Soc. Spec. Pub. 106: 153 – 184.en_US
dc.identifier.citedreferenceR. Hall and J. D. Holloway, eds. Biogeography and geological evolution of Southeast Asia. Backhuys Publishers, Leiden, The Netherlands.en_US
dc.identifier.citedreferenceHolmgren, P. K., N. H. Holmgren, and L. C. Barnett. 1990. Index Herbariorum. New York Botanical Garden, Bronx, NY.en_US
dc.identifier.citedreferenceKing, L. C. 1962. The geomorphology of the Earth: a study and synthesis of world scenery. Hafner, New York.en_US
dc.identifier.citedreferenceKrause, D. W., J. H. Hartman, and N. A. Wells. 1997. Late Cretaceous vertebrates from Madagascar. Pp. 3 – 43 in S. M. Goodman and B. D. Patterson, eds. Natural change and human impact in Madagascar. Smithsonian Institution Press, Washington, DC.en_US
dc.identifier.citedreferenceLarson, A. 1994. The comparison of morphological and molecular data in phylogenetic systematics. Pp. 371 – 390 in B. Schierwater, B. Streit, G. P. Wagner, and R. DeSalle, eds. Molecular ecology and evolution: approaches and applications. Birkhauser Verlag, Basel, Switzerland.en_US
dc.identifier.citedreferenceLavin, M., and M. Luckow. 1993. Origins and relationships of tropical North America in the context of the boreotropics hypothesis. Am. J. Bot. 80: 1 – 14.en_US
dc.identifier.citedreferenceLavin, M., M. Thulin, J.-N. Labat, and R. T. Pennington. 2000. Africa, the odd man out: molecular biogeography of Dalbergioid Legumes (Fabaceae) suggests otherwise. Syst. Bot. 25: 449 – 467.en_US
dc.identifier.citedreferenceLee, T.-Y., and L. A. Lawver. 1995. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics 251: 85 – 138.en_US
dc.identifier.citedreferenceLong, J. A., R. Vickers-Rich, K. Hirsch, E. Bray, and C. Tuniz. 1998. The Cervantes egg: an early Malagasy tourist to Australia. Rec. West. Aust. Mus. 19: 39 – 46.en_US
dc.identifier.citedreferenceLowry, P. P. 1998. Diversity, endemism, and extinction in the flora of New Caledonia: a review. Acad. Sin. Monogr. Ser. 16: 181 – 206.en_US
dc.identifier.citedreferenceMathews, S., and M. J. Donoghue. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286: 947 – 950.en_US
dc.identifier.citedreferenceMcKenna, M. C. 1973. Sweepstakes, filters, corridors, Noah's Arks, and beached Viking funeral ships in paleogeography. Pp. 295 – 308 in D. H. Tarling and S. K. Rungcorn, eds. Implications of continental drift to the earth sciences. Vol. 1. Academic Press, London.en_US
dc.identifier.citedreferenceMcLoughlin, S. 2001. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Aust. J. Bot. 49: 271 – 300.en_US
dc.identifier.citedreferenceMorley, R. J. 2000. Origin and evolution of tropical rain forests. John Wiley and Sons, New York.en_US
dc.identifier.citedreferenceNiedenzu, F. 1928. Malpighiaceae. Pp. 1 – 870 in A. Engler, ed. Das Pflanzenreich IV, 141. Wilhelm Engelmann, Leipzig, Germany.en_US
dc.identifier.citedreferenceOlmstead, R. G., and J. A. Sweere. 1994. Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst. Biol. 43: 467 – 481.en_US
dc.identifier.citedreferenceOlson, S. L., and D. Rasmussen. 1986. Paleoenvironment of the earliest hominids: new evidence from the Oligocene avifauna of Egypt. Science 233: 1202 – 1204.en_US
dc.identifier.citedreferencePatriat, P., and J. Achache. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanisms of plates. Nature 311: 615 – 621.en_US
dc.identifier.citedreferencePotts, R., and A. K. Behrensmeyer. 1992. Late Cenozoic terrestrial ecosystems. Pp. 419 – 541 in A. K. Behrensmeyer, J. D. Damuth, W. A. DiMichele, R. Potts, H.-D. Sues, and S. L. Wing, eds. Terrestrial ecosystems through time: evolutionary paleoecology of terrestrial plants and animals. Univ. of Chicago Press, Chicago, IL.en_US
dc.identifier.citedreferenceRambaut, A., and N. C. Grassly. 1997. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci. 13: 235 – 238.en_US
dc.identifier.citedreferenceRaven, P. H., and D. I. Axelrod. 1974. Angiosperm biogeography and past continental movements. Ann. Mo. Bot. Gard. 61: 39 – 637.en_US
dc.identifier.citedreferenceRenner, S. S., G. Clausing, and K. Meyer. 2001. Historical biogeography of Melastomataceae: the roles of Tertiary migration and long-distance dispersal. Am. J. Bot. 88: 1290 – 1300.en_US
dc.identifier.citedreferenceRetallack, G. P. 1990. Soils of the past. Unwin-Hyman, London.en_US
dc.identifier.citedreferenceRetallack, G. J., D. P. Dugas, and E. A. Bestland. 1990. Fossil soils and grasses of a Middle Miocene East African grassland. Science 247: 1325 – 1328.en_US
dc.identifier.citedreferenceRicklefs, R. E., and R. E. Latham. 1993. Global patterns of diversity in mangrove floras. Pp. 215 – 229 in R. E. Ricklefs and D. Schlu-ter, eds. Species diversity in ecological communities. Univ. of Chicago Press, Chicago, IL.en_US
dc.identifier.citedreferenceRonquist, F. 1996. DIVA. Ver. 1.1. Computer program and manual available from the author via ftp.uu.se or ftp.systbot.uu.se. Dept. of Evolutionary Biology, Uppsala University, Uppsala, Sweden.en_US
dc.identifier.citedreference1997. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst. Biol. 46: 195 – 203.en_US
dc.identifier.citedreferenceSanderson, M. J. 1997. A nonparametric approach to estimating divegence times in the absence of rate constancy. Mol. Biol. Evol. 14: 1218 – 1231.en_US
dc.identifier.citedreferenceSanmartÍn, I., H. Enghoff, and F. Ronquist. 2001. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol. J. Linn. Soc. 73: 345 – 390.en_US
dc.identifier.citedreferenceSmith, A. G., D. G. Smith, and B. M. Funnell. 1994. Atlas of Mesozoic and Cenozoic coastlines. Cambridge Univ. Press, Cambridge, UK.en_US
dc.identifier.citedreferenceSprague, T. A. 1906. A revision of Acridocarpus. J. Bot. 19: 192 – 207.en_US
dc.identifier.citedreferenceStebbins, G. L. 1952. Aridity as a stimulus to plant evolution. Am. Nat. 86: 33 – 44.en_US
dc.identifier.citedreferenceSwofford, D. L. 2000. PAUP*: phylogenetic analysis using parsimony (*and other methods). Ver. 4. Sinauer, Sunderland, MA.en_US
dc.identifier.citedreferenceTaylor, D. W., and W. Crepet. 1987. Fossil floral evidence of Malpighiaceae and an early plant-pollinator relationship. Am. J. Bot. 74: 274 – 286.en_US
dc.identifier.citedreferenceTempleton, A. R. 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37: 221 – 244.en_US
dc.identifier.citedreferenceThulin, M. 1994. Aspects of disjunct distributions and endemism in the arid parts of the Horn of Africa, particularly Somalia. Pp. 1105 – 1119 in J. H. Seyani and A. C. Chikuni, eds. Proceedings of the 13th plenary meeting AETFAT. Vol. 2. National Herbarium and Botanic Gardens, Zomba, Malawi.en_US
dc.identifier.citedreferenceThulin, M., and M. Lavin. 2001. Phylogeny and biogeography of the Ormocarpum group (Fabaceae): a new genus Zygocarpum from the horn of Africa region. Syst. Bot. 26: 299 – 317.en_US
dc.identifier.citedreferenceTiffney, B. H. 1985a. Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J. Arnold Arbor. Harv. Univ. 66: 73 – 94.en_US
dc.identifier.citedreference1985b. The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J. Arnold Arbor. Harv. Univ. 66: 243 – 273.en_US
dc.identifier.citedreferenceTiffney, B. H., and S. R. Manchester. 2001. The use of geological and paleontological evidence in evaluating plant phylogenetic hypotheses in the Northern Hemisphere Tertiary. Int. J. Plant Sci. 162: S3 – S17.en_US
dc.identifier.citedreferenceVan Couvering, J. A., and J. A. H. Van Couvering 1976. Early Miocene mammal fossils from East Africa: aspects of geology, faunistics and paleo-ecology. Pp. 155 – 198 in G. L. Isaac and E. R. McCown, eds. Human origins: Louis Leaky and the East African evidence. W. A. Benjamin, Menlo Park, CA.en_US
dc.identifier.citedreferenceWen, J. 1999. Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annu. Rev. Ecol. Syst. 30: 421 – 455.en_US
dc.identifier.citedreferenceWendel, J. F., A. Schnabel, and T. Seelanan. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton. Proc. Natl. Acad. Sci. USA 92: 280 – 284.en_US
dc.identifier.citedreferenceWhite, F. 1983. The vegetation of Africa. UNESCO Publishing, Paris.en_US
dc.identifier.citedreferenceWhitmore, T. C. 1998. An introduction to tropical rain forests. 2d ed. Oxford Univ. Press, Oxford, UK.en_US
dc.identifier.citedreferenceWolfe, J. A. 1975. Some aspects of plant geography of the Northern Hemisphere during the late Cretaceous and Tertiary. Ann. Mo. Bot. Gard. 62: 264 – 279.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.