Show simple item record

In situ hatching of invertebrate diapausing eggs from ships’ ballast sediment

dc.contributor.authorBailey, Sarah A.en_US
dc.contributor.authorNandakumar, Kanavillilen_US
dc.contributor.authorDuggan, Ian C.en_US
dc.contributor.authorvan Overdijk, Colin D. A.en_US
dc.contributor.authorJohengen, Thomas H.en_US
dc.contributor.authorReid, David F.en_US
dc.contributor.authorMacIsaac, Hugh J.en_US
dc.date.accessioned2010-06-01T19:40:12Z
dc.date.available2010-06-01T19:40:12Z
dc.date.issued2005-09en_US
dc.identifier.citationBailey, Sarah A.; Nandakumar, Kanavillil; Duggan, Ian C.; van Overdijk, Colin D. A.; Johengen, Thomas H.; Reid, David F.; MacIsaac, Hugh J. (2005). " In situ hatching of invertebrate diapausing eggs from ships’ ballast sediment." Diversity and Distributions 11(5): 453-460. <http://hdl.handle.net/2027.42/72804>en_US
dc.identifier.issn1366-9516en_US
dc.identifier.issn1472-4642en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72804
dc.description.abstractShips that enter the Great Lakes laden with cargo carry only residual ballast water and sediment in ballast tanks. These ships are designated ‘no ballast on board’ (NOBOB) and constitute > 90% of inbound traffic. We conducted in situ experiments using emergence traps to assess the viability and the introduction potential of invertebrate diapausing stages present in ships’ ballast sediment. All trials commenced while vessels operated on the lower lakes (Erie, Ontario) and were completed 6–11 days later at ports on the upper lakes (Michigan, Lake Superior). Eight trials were conducted on four ships using five different ballast sediments. Hatching was observed on every ship, although not from all sediments on all ships. Overall hatch rates were very low (0.5 individuals per 500 g sediment), typically involving activation of < 0.05% of total eggs present. Five species of rotifers and copepod nauplii were hatched from ballast sediments, although only one or two species typically hatched from any one sediment. Results of this study indicate that hatching of diapausing eggs contained in ballast sediment of NOBOB ships poses a relatively low risk of invasion to the Great Lakes. However, as reproduction may occur in tanks, and non-indigenous species may be involved in numerous introduction events, the risk posed by this vector is small but potentially important. While dormancy is a characteristic enabling enhanced survival during transportation in ballast tanks, it becomes a hindrance for introduction.en_US
dc.format.extent161816 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© 2005 Blackwell Publishing Ltden_US
dc.subject.otherBallast Wateren_US
dc.subject.otherBiological Invasionsen_US
dc.subject.otherGreat Lakesen_US
dc.subject.otherIntroductionen_US
dc.subject.otherNon-indigenous Speciesen_US
dc.subject.otherResting Stagesen_US
dc.titleIn situ hatching of invertebrate diapausing eggs from ships’ ballast sedimenten_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCooperative Institute for Limnology and Ecosystems Research/University of Michigan, Ann Arbor, MI, 48104-2298, USA; anden_US
dc.contributor.affiliationotherGreat Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada,en_US
dc.contributor.affiliationotherNational Oceanic and Atmospheric Administration/Great Lakes Environmental Research Laboratory, Ann Arbor, MI, 48105-2945, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72804/1/j.1366-9516.2005.00150.x.pdf
dc.identifier.doi10.1111/j.1366-9516.2005.00150.xen_US
dc.identifier.sourceDiversity and Distributionsen_US
dc.identifier.citedreferenceBailey, S.A., Duggan, I.C., Jenkins, P.T. & MacIsaac, H.J. ( 2005 ) Invertebrate resting stages in residual ballast sediment of transoceanic ships. Canadian Journal of Fisheries and Aquatic Sciences, in press.en_US
dc.identifier.citedreferenceBailey, S.A., Duggan, I.C., van Overdijk, C.D.A., Jenkins, P.T. & MacIsaac, H.J. ( 2003 ) Viability of invertebrate diapausing eggs collected from residual ballast sediment. Limnology and Oceanography, 48, 1701 – 1710.en_US
dc.identifier.citedreferenceBailey, S.A., Duggan, I.C., van Overdijk, C.D.A., Johengen, T.H., Reid, D.F. & MacIsaac, H.J. ( 2004 ) Salinity tolerance of diapausing eggs of freshwater zooplankton. Freshwater Biology, 49, 286 – 295.en_US
dc.identifier.citedreferenceBurgess, R. ( 2001 ) An improved protocol for separating meiofauna from sediments using colloidal silica sols. Marine Ecology Progress Series, 214, 161 – 165.en_US
dc.identifier.citedreferenceCarlton, J.T. ( 1985 ) Transoceanic and interoceanic dispersal of coastal marine organisms: the biology of ballast water. Oceanography and Marine Biology: an Annual Review, 23, 313 – 371.en_US
dc.identifier.citedreferenceCarlton, J.T. ( 2003 ) Community assembly and historical biogeography in the North Atlantic Ocean: the potential role of human-mediated dispersal vectors. Hydrobiologia, 503, 1 – 8.en_US
dc.identifier.citedreferenceColautti, R.I., Grigorovich, I.A. & MacIsaac, H.J. ( 2005 ) Propagule pressure: a null model for biological invasions. Biological Invasions, in press.en_US
dc.identifier.citedreferenceColautti, R.I. & MacIsaac, H.J. ( 2004 ) A neutral terminology for defining invasive species. Diversity and Distributions, 10, 135 – 141.en_US
dc.identifier.citedreferenceColautti, R.I., Niimi, A.J., van Overdijk, C.D.A., Mills, E.L., Holeck, K. & MacIsaac, H.J. ( 2003 ) Spatial and temporal analysis of transoceanic shipping vectors to the Great Lakes. Invasion pathways: analysis of invasion patterns and pathway management (ed. by G. M. Ruiz, J. T. Carlton and R. N. Mack ), pp. 227 – 246. Island Press, Washington, D.C.en_US
dc.identifier.citedreferenceDermott, R. & Munawar, M. ( 1992 ) A simple and sensitive assay for evaluation of sediment toxicity using Lumbriculus variegatus (Mueller). Hydrobiologia, 235–236, 407 – 414.en_US
dc.identifier.citedreferenceDrake, J.M. ( 2004 ) Allee effects and the risk of biological invasion. Risk Analysis, 24, 795 – 802.en_US
dc.identifier.citedreferenceDuncan, R.P., Blackburn, T.M. & Sol, D. ( 2003 ) The ecology of bird introductions. Annual Review of Ecology and Systematics, 34, 71 – 98.en_US
dc.identifier.citedreferenceElton, C.S. ( 1958 ) The ecology of invasions by animals and plants. Methuen, London.en_US
dc.identifier.citedreferenceGollasch, S., MacDonald, E., Belson, S., Botnen, H., Christensen, J.T., Hamer, J.P., Houvenaghel, G., Jelmert, A., Lucas, I., Masson, D., McCollin, T., Olenin, S., Persson, A., Wallentinus, I., Wetsteyn, L.P.M.J. & Wittling, T. ( 2002 ) Life in ballast tanks. Invasive aquatic species of Europe: distribution, impacts and management (ed. by E. LeppÄkoski, S. Gollasch and S. Olenin ), pp. 217 – 231. Kluwer Academic Publishers, Dordrecht.en_US
dc.identifier.citedreferenceGray, D.K., Bailey, S.A., Duggan, I.C. & MacIsaac, H.J. ( 2005 ) Viability of invertebrate diapausing eggs exposed to saltwater: implications for Great Lakes’ ship ballast management. Biological Invasions, in press.en_US
dc.identifier.citedreferenceGrevstad, F.S. ( 1999 ) Factors influencing the chance of population establishment: implications for release strategies in biocontrol. Ecological Applications, 9, 1439 – 1447.en_US
dc.identifier.citedreferenceGrigorovich, I.A., Colautti, R.I., Mills, E.L., Holeck, K. & MacIsaac, H.J. ( 2003 ) Ballast-mediated animal introductions in the Laurentian Great Lakes: retrospective and prospective analyses. Canadian Journal of Fisheries and Aquatic Sciences, 60, 740 – 756.en_US
dc.identifier.citedreferenceGrigorovich, I.A., MacIsaac, H.J., Shadrin, N.V. & Mills, E.L. ( 2002 ) Patterns and mechanisms of aquatic invertebrate introductions in the Ponto-Caspian region. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1189 – 1208.en_US
dc.identifier.citedreferenceHayes, K.R. & Sliwa, C. ( 2003 ) Identifying potential marine pests — a deductive approach applied to Australia. Marine Pollution Bulletin, 46, 91 – 98.en_US
dc.identifier.citedreferenceHoleck, K.T., Mills, E.L., MacIsaac, H.J., Dochoda, M.R., Colautti, R.I. & Ricciardi, A. ( 2004 ) Bridging troubled waters: biological invasions, transoceanic shipping, and the Laurentian Great Lakes. Bioscience, 54, 919 – 929.en_US
dc.identifier.citedreferenceKolar, C.S. & Lodge, D.M. ( 2001 ) Progress in invasion biology: predicting invaders. Trends in Ecology and Evolution, 16, 199 – 204.en_US
dc.identifier.citedreferenceKolar, C.S. & Lodge, D.M. ( 2002 ) Ecological predictions and risk assessment for alien fishes in North America. Science, 298, 1233 – 1236.en_US
dc.identifier.citedreferenceLeppÄkoski, E., Gollasch, S., Gruszka, P., Ojaveer, H., Olenin, S. & Panov, V. ( 2002 ) The Baltic — a sea of invaders. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1175 – 1188.en_US
dc.identifier.citedreferenceLodge, D.M. ( 1993 ) Biological invasions: lessons for ecology. Trends in Ecology and Evolution, 8, 133 – 137.en_US
dc.identifier.citedreferenceMacIsaac, H.J., Robbins, T.C. & Lewis, M.A. ( 2002 ) Modelling ships’ ballast water as invasion threats to the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1245 – 1256.en_US
dc.identifier.citedreferenceNebeker, A.V., Onjukka, S.T., Stevens, D.G., Chapman, G.A. & Dominguez, S.E. ( 1992 ) Effects of low dissolved oxygen on survival, growth and reproduction of Daphnia, Hyalella, and Gammarus. Environmental Toxicology and Chemistry, 11, 373 – 379.en_US
dc.identifier.citedreferencePhipps, G.L., Mattson, V.R. & Ankley, G.T. ( 1995 ) Relative sensitivity of 3 fresh water benthie macroinvertebrates to 10 contaminants. Archives of Environmental Contamination and Toxicology, 28, 281 – 286.en_US
dc.identifier.citedreferencePourriot, R. & Rougier, C. ( 1997 ) Reproduction rates in relation to food concentration and temperature in three species of the genus Brachionus (Rotifera). Annales de Limnologie, 33, 23 – 31.en_US
dc.identifier.citedreferencePutzer, V.M., de Zwann, A. & Wieser, W. ( 1990 ) Anaerobic energy metabolism in the oligochaetes Lumbriculus variegatus MÜller. Journal of Comparative Physiology Part B. Biochemical, Systematic, and Environmental Physiology, 159, 707 – 715.en_US
dc.identifier.citedreferenceRouget, M. & Richardson, D.M. ( 2003 ) Inferring process from pattern in plant invasions: a semi-mechanistic model incorporating propagule pressure and environmental factors. American Naturalist, 162, 713 – 724.en_US
dc.identifier.citedreferenceRuiz, G.M., Fofonoff, P.W., Carlton, J.T., Wonham, M.J. & Hines, A.H. ( 2000 ) Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annual Review of Ecology and Systematics, 31, 481 – 531.en_US
dc.identifier.citedreferenceSprague, J.B. ( 1963 ) Resistance of four freshwater crustaceans to lethal high temperature and low oxygen. Journal of the Fisheries Research Board of Canada, 20, 387 – 415.en_US
dc.identifier.citedreferenceTaylor, B.E. ( 1988 ) Analysing population dynamics of zooplankton. Limnology and Oceanography, 33, 1266 – 1273.en_US
dc.identifier.citedreferenceVeltman, C.J., Nee, S. & Crawley, M.J. ( 1996 ) Correlates of introduction success in exotic New Zealand birds. American Naturalist, 147, 542 – 557.en_US
dc.identifier.citedreferenceWallace, R.L. & Snell, T.W. ( 2001 ) Phylum Rotifera. Ecology and classification of North American freshwater invertebrates (ed. by J. H. Thorp and A. P. Covich ), pp. 195 – 254. Academic Press, San Diego.en_US
dc.identifier.citedreferenceWilliamson, M. & Fitter, A. ( 1996 ) The varying success of invaders. Ecology, 77, 1661 – 1666.en_US
dc.identifier.citedreferenceWonham, M.J., Carlton, J.T., Ruiz, G.M. & Smith, L.D. ( 2000 ) Fish and ships: relating dispersal frequency to success in biological invasions. Marine Biology, 136, 1111 – 1121.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.