Show simple item record

Stoichiometry of soil enzyme activity at global scale

dc.contributor.authorSinsabaugh, Robert L.en_US
dc.contributor.authorLauber, Christian L.en_US
dc.contributor.authorWeintraub, Michael N.en_US
dc.contributor.authorAhmed, Bonyen_US
dc.contributor.authorAllison, Steven D.en_US
dc.contributor.authorCrenshaw, Chelseaen_US
dc.contributor.authorContosta, Alexandra R.en_US
dc.contributor.authorCusack, Danielaen_US
dc.contributor.authorFrey, Seritaen_US
dc.contributor.authorGallo, Marcy E.en_US
dc.contributor.authorGartner, Tracy B.en_US
dc.contributor.authorHobbie, Sarah E.en_US
dc.contributor.authorHolland, Kerien_US
dc.contributor.authorKeeler, Bonnie L.en_US
dc.contributor.authorPowers, Jennifer S.en_US
dc.contributor.authorStursova, Martinaen_US
dc.contributor.authorTakacs-Vesbach, Cristinaen_US
dc.contributor.authorWaldrop, Mark P.en_US
dc.contributor.authorWallenstein, Matthew D.en_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorZeglin, Lydia H.en_US
dc.date.accessioned2010-06-01T19:41:10Z
dc.date.available2010-06-01T19:41:10Z
dc.date.issued2008-11en_US
dc.identifier.citationSinsabaugh, Robert L.; Lauber, Christian L.; Weintraub, Michael N.; Ahmed, Bony; Allison, Steven D.; Crenshaw, Chelsea; Contosta, Alexandra R.; Cusack, Daniela; Frey, Serita; Gallo, Marcy E.; Gartner, Tracy B.; Hobbie, Sarah E.; Holland, Keri; Keeler, Bonnie L.; Powers, Jennifer S.; Stursova, Martina; Takacs-Vesbach, Cristina; Waldrop, Mark P.; Wallenstein, Matthew D.; Zak, Donald R.; Zeglin, Lydia H. (2008). "Stoichiometry of soil enzyme activity at global scale." Ecology Letters 11(11): 1252-1264. <http://hdl.handle.net/2027.42/72820>en_US
dc.identifier.issn1461-023Xen_US
dc.identifier.issn1461-0248en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72820
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18823393&dopt=citationen_US
dc.format.extent353613 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 Blackwell Publishing Ltd/CNRSen_US
dc.subject.otherC : N : P Ratioen_US
dc.subject.otherCellobiohydrolaseen_US
dc.subject.otherEcological Stoichiometryen_US
dc.subject.otherLeucine Aminopeptidaseen_US
dc.subject.otherPeroxidaseen_US
dc.subject.otherPhenol Oxidaseen_US
dc.subject.otherPhosphataseen_US
dc.subject.otherSoil Enzyme Activityen_US
dc.subject.otherSoil Organic Matteren_US
dc.subject.otherβ-1,4-glucosidaseen_US
dc.subject.otherβ-1,4- N -Acetylglucosaminidaseen_US
dc.titleStoichiometry of soil enzyme activity at global scaleen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources, University of Michigan, Ann Arbor, MI 48109-1115, USAen_US
dc.contributor.affiliationotherDepartment of Biology, University of New Mexico, Albuquerque, NM, 87131, USAen_US
dc.contributor.affiliationotherDepartment of Environmental Sciences, University of Toledo, Toledo, OH 43606-3390, USAen_US
dc.contributor.affiliationotherSchool of Life Sciences, Arizona State University, Tempe, AZ 85281, USAen_US
dc.contributor.affiliationotherDepartments of Ecology and Evolutionary Biology and Earth System Science, University of California, Irvine, CA 92697, USAen_US
dc.contributor.affiliationotherDepartment of Natural Resources, University of New Hampshire, Durham, NH 03824, USAen_US
dc.contributor.affiliationotherDepartment of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, USAen_US
dc.contributor.affiliationotherDepartment of Biology and the Environmental Science Program, Carthage College, 2001 Alford Park Drive, Kenosha, WI 53140, USAen_US
dc.contributor.affiliationotherDepartment of Ecology, Evolution and Behavior, University of Minnesota, 1987 Upper Buford Circle, St Paul, MN 55108, USAen_US
dc.contributor.affiliationotherDepartment of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USAen_US
dc.contributor.affiliationotherDepartments of Ecology, Evolution & Behavior, Plant Biology and Soil, Water & Climate, University of Minnesota, 1987 Upper Buford Circle, St Paul, MN 55108, USAen_US
dc.contributor.affiliationotherUnited States Geological Survey, 345 Middlefield Rd, MS 962, Menlo Park, CA 94025, USAen_US
dc.contributor.affiliationotherNatural Resource Ecology Laboratory, Colorado State University, Campus Delivery 1499, Fort Collins, CO 80523-1499, USAen_US
dc.identifier.pmid18823393en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72820/1/j.1461-0248.2008.01245.x.pdf
dc.identifier.doi10.1111/j.1461-0248.2008.01245.xen_US
dc.identifier.sourceEcology Lettersen_US
dc.identifier.citedreferenceAllison, S.D., Gartner, T., Holland, K., Weintraub, M. & Sinsabaugh, R.L. ( 2007 ). Soil enzymes: linking proteomics and ecological process. In: Manual of Environmental Microbiology. ASM Press, 3rd Edition, Washington D. C., pp. 704 – 711.en_US
dc.identifier.citedreferenceAndersson, M., KjØller, A. & Struwe, S. ( 2005 ). Microbial enzyme activities in leaf litter, humus and mineral soil layers of European forests. Soil Biol. Biochem., 36, 1527 – 1537.en_US
dc.identifier.citedreferenceBaath, E. & Anderson, T.H. ( 2003 ). Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem., 35, 955 – 963.en_US
dc.identifier.citedreferenceBaldrian, P. ( 2006 ). Fungal laccases-occurrence and properties. FEMS Microbiol. Rev., 30, 215 – 242.en_US
dc.identifier.citedreferenceBurns, R.G. ( 1978 ). Soil Enzymes. Academic Press, New York.en_US
dc.identifier.citedreferenceBurns, R.G. & Dick, R.P. ( 2002 ). Enzymes in the Environment: Activity, Ecology and Applications. Marcel Dekker, New York.en_US
dc.identifier.citedreferenceCaldwell, B. ( 2005 ). Enzyme activities as a component of soil biodiversity: a review. Pedobiologia, 49, 637 – 644.en_US
dc.identifier.citedreferenceCleveland, C.C. & Liptzin, D. ( 2007 ). C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235 – 252.en_US
dc.identifier.citedreferenceCollins, S.L., Sinsabaugh, R.L., Crenshaw, C., Green, L.E., Porras-Alfaro, A., Stursova, M. et al. ( 2008 ). Pulse dynamics and microbial processes in aridland ecosytems. J. Ecol., 96, 413 – 420.en_US
dc.identifier.citedreferenceCookson, W.R., Osman, M., Marschner, P., Abaye, D.A., Clark, I., Murphy, D.V. et al. ( 2007 ). Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biol. Biochem., 39, 744 – 756.en_US
dc.identifier.citedreferenceDeForest, J.L., Zak, D.R., Pregitzer, K.S. & Burton, A.J. ( 2004 ). Anthropogenic NO3- deposition alters microbial community function in northern hardwood forests. Soil Sci. Soc. Am. J., 68, 132 – 138.en_US
dc.identifier.citedreferenceDorÁn, N. & Esposito, E. ( 2000 ). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatement: a review. Appl. Catal. B Environ., 6, 83 – 99.en_US
dc.identifier.citedreferenceFierer, N. & Jackson, R.B. ( 2006 ). The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. U.S.A., 103, 626 – 631.en_US
dc.identifier.citedreferenceFinzi, A.C., Sinsabaugh, R.L., Long, T.M. & Osgood, M.P. ( 2006 ). Microbial community responses to atmospheric CO2 enrichment in a Pinus taeda forest. Ecosystems, 9, 215 – 226.en_US
dc.identifier.citedreferenceFog, K. ( 1988 ). The effect of added nitrogen on the rate of decomposition organic matter. Biol. Rev., 63, 433 – 462.en_US
dc.identifier.citedreferenceFreeman, C., Ostle, N. & Kang, H. ( 2001 ). An enzymic ‘latch’ on a global carbon store – a shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature, 409, 149.en_US
dc.identifier.citedreferenceFrey, S.D., Knorr, M., Parrent, J.L. & Simpson, R.T. ( 2004 ). Chronic nitrogen enrichment affects the community structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manage., 196, 159 – 171.en_US
dc.identifier.citedreferenceHofrichter, M. ( 2002 ). Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb. Technol., 30, 454 – 466.en_US
dc.identifier.citedreferenceKirk, T.K. & Farrell, R.L. ( 1987 ). Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol., 41, 465 – 505.en_US
dc.identifier.citedreferenceLipson, D.A., Wilson, R.F. & Oechel, W. ( 2005 ). Effects of elevated atmospheric CO 2 on soil microbial biomass, activity, and diversity in a Chaparral ecosystem. Appl. Environ. Microbiol., 71, 8573 – 8580.en_US
dc.identifier.citedreferenceLjungdahl, L.G. & Eriksson, K.-E. ( 1985 ). Ecology of microbial cellulose degradation. Adv. Microb. Ecol., 8, 237 – 299.en_US
dc.identifier.citedreferenceManzoni, S., Jackson, R.B., Trofymow, J.A. & Porporato, A. ( 2008 ). The global stoichiometry of litter nitrogen mineralization. Science, 321, 684 – 686.en_US
dc.identifier.citedreferenceMartinelli, L.A., Piccolo, M.C., Townsend, A.R., Vitousek, P.M., Cuevas, E., McDowell, W. et al. ( 1999 ). Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry, 46, 45 – 65.en_US
dc.identifier.citedreferenceMarx, M.C., Wood, M. & Jarvis, S.C. ( 2001 ). A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem., 33, 1633 – 1640.en_US
dc.identifier.citedreferenceMayer, A.M. & Staples, R.C. ( 2002 ). Laccase: new functions for an old enzyme. Phytochemistry, 60, 551 – 565.en_US
dc.identifier.citedreferenceMcGill, W.B. & Cole, C.V. ( 1981 ). Comparative aspects of cycling of organic C,N, S and P through soil organic matter. Geoderma, 26, 267 – 286.en_US
dc.identifier.citedreferenceMcGroddy, M.E., Daufresne, T. & Hedin, L.O. ( 2004 ). Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology, 85, 2390 – 2401.en_US
dc.identifier.citedreferenceMeentemeyer, V. ( 1978 ). Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465 – 472.en_US
dc.identifier.citedreferenceMoorhead, D.L. & Sinsabaugh, R.L. ( 2006 ). A theoretical model of litter decay and microbial interaction. Ecol. Monogr., 76, 151 – 174.en_US
dc.identifier.citedreferenceOlander, L.P. & Vitousek, P.M. ( 2000 ). Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49, 175 – 190.en_US
dc.identifier.citedreferencePorras-Alfaro, A., Lipinski, K., Herrera, J., Natvig, D.O. & Sinsabaugh, R.L. ( 2008 ). Diversity and distribution of soil fungal communities in a semiarid grassland. FEMS Microbiol. Ecol., in press.en_US
dc.identifier.citedreferenceRabinovich, M.L., Bolobova, A.V. & Vasil’chenko, L.G. ( 2004 ). Fungal decomposition of natural aromatic structures and xenobiotics: a review. Appl. Biochem. Microb., 40, 1 – 17.en_US
dc.identifier.citedreferenceRedfield, A. ( 1958 ). The biological control of chemical factors in the environment. Am. Sci., 46, 205 – 221.en_US
dc.identifier.citedreferenceReich, P.B. & Oleksyn, J. ( 2004 ). Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. U.S.A., 101, 11001 – 11006.en_US
dc.identifier.citedreferenceSchimel, J.P. & Weintraub, M.N. ( 2003 ). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem., 35, 549 – 563.en_US
dc.identifier.citedreferenceSingh, B.K., Munro, S., Reid, E., Ord, B., Potts, J.M., Paterson, E. et al. ( 2006 ). Investigating microbial community structure in soils by physiological, biochemical and molecular fingerprinting methods. Eur. J. Soil Sci., 57, 72 – 82.en_US
dc.identifier.citedreferenceSinsabaugh, R.L. ( 2005 ). Fungal enzymes at the community scale. In: The Fungal Community, 3rd edn ( eds Dighton, J., Oudermans, P. & White, J. ). CRC Press, New York, pp. 237 – 247.en_US
dc.identifier.citedreferenceSinsabaugh, R.L. & Foreman, C.M. ( 2001 ). Activity profiles of bacterioplankton in a eutrophic river. Freshw. Biol., 46, 1 – 12.en_US
dc.identifier.citedreferenceSinsabaugh, R.L. & Moorhead, D.L. ( 1994 ). Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol. Biochem., 26, 1305 – 1311.en_US
dc.identifier.citedreferenceSinsabaugh, R.L., Findlay, S., Franchini, P. & Fischer, D. ( 1997 ). Enzymatic analysis of riverine bacterioplankton production. Limnol. Oceanogr., 42, 29 – 38.en_US
dc.identifier.citedreferenceSinsabaugh, R.L., Carreiro, M.M. & Repert, D.A. ( 2002 ). Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 60, 1 – 24.en_US
dc.identifier.citedreferenceSinsabaugh, R.L., Gallo, M.E., Lauber, C., Waldrop, M. & Zak, D.R. ( 2005 ). Extracellular enzyme activities and soil carbon dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry, 75, 201 – 215.en_US
dc.identifier.citedreferenceSkujins, J. ( 1978 ). History of abiontic soil enzyme research. In: Soil Enzymes ( ed. Burns, R.G. ). Academic Press, New York. pp. 1 – 50.en_US
dc.identifier.citedreferenceSterner, R.W. & Elser, J.J. ( 2002 ). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ.en_US
dc.identifier.citedreferenceStursova, M. & Sinsabaugh, R.L. ( 2008 ). Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation. Soil Biol. Biochem., 40, 550 – 553.en_US
dc.identifier.citedreferenceStursova, M., Crenshaw, C. & Sinsabaugh, R.L. ( 2006 ). Microbial responses to long term N deposition in a semi-arid grassland. Microb. Ecol., 51, 90 – 98.en_US
dc.identifier.citedreferenceToor, G.S., Condron, L.M., Di, H.J., Cameron, K.C. & Cade-Menum, B.J. ( 2003 ). Characterisation of organic phosphorus in leachate from a grassland soil. Soil Biol. Biochem., 35, 1317 – 1323.en_US
dc.identifier.citedreferenceTurner, B.L., McKelvie, I.D. & Haygarth, P.M. ( 2002 ). Characterisation of water extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biol. Biochem., 34, 27 – 35.en_US
dc.identifier.citedreferenceVitousek, P.M. & Howarth, R.W. ( 1991 ). Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry, 13, 87 – 115.en_US
dc.identifier.citedreferenceWaldrop, M.P. & Harden, J.H. ( 2008 ). Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest. Glob. Chang. Biol., doi: 10.1111/j.1365-2486.2008.01661.x.en_US
dc.identifier.citedreferenceWalker, T.W. & Syers, J.K. ( 1976 ). The fate of phosphorus during pedogenesis. Geoderma, 15, 1 – 19.en_US
dc.identifier.citedreferenceWeintraub, M.N., Scott-Denton, L.E., Schmidt, S.K. & Monson, R.K. ( 2007 ). The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia, 154, 327 – 338.en_US
dc.identifier.citedreferenceZeglin, L.H., Stursova, M., Sinsabaugh, R.L. & Collins, S.L. ( 2007 ). Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia, 296, 65 – 75.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.