Show simple item record

Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees

dc.contributor.authorPaoli, Gary D.en_US
dc.contributor.authorCurran, Lisa M.en_US
dc.contributor.authorZak, Donald R.en_US
dc.date.accessioned2010-06-01T19:41:17Z
dc.date.available2010-06-01T19:41:17Z
dc.date.issued2006-01en_US
dc.identifier.citationPAOLI, GARY D.; CURRAN, LISA M.; ZAK, DONALD R. (2006). "Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees." Journal of Ecology 94(1): 157-170. <http://hdl.handle.net/2027.42/72822>en_US
dc.identifier.issn0022-0477en_US
dc.identifier.issn1365-2745en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72822
dc.description.abstract1   The relative importance of niche- and dispersal-mediated processes in structuring diverse tropical plant communities remains poorly understood. Here, we link mesoscale beta diversity to soil variation throughout a lowland Bornean watershed underlain by alluvium, sedimentary and granite parent materials ( c . 340 ha, 8–200 m a.s.l.). We test the hypothesis that species turnover across the habitat gradient reflects interspecific partitioning of soil resources. 2   Floristic inventories (≥ 1 cm d.b.h.) of the Dipterocarpaceae, the dominant Bornean canopy tree family, were combined with extensive soil analyses in 30 (0.16 ha) plots. Six samples per plot were analysed for total C, N, P, K, Ca and Mg, exchangeable K, Ca and Mg, extractable P, texture, and pH. 3   Extractable P, exchangeable K, and total C, N and P varied significantly among substrates and were highest on alluvium. Thirty-one dipterocarp species ( n  = 2634 individuals, five genera) were recorded. Dipterocarp density was similar across substrates, but richness and diversity were highest on nutrient-poor granite and lowest on nutrient-rich alluvium. 4   Eighteen of 22 species were positively or negatively associated with parent material. In 8 of 16 abundant species, tree distribution (≥ 10 cm d.b.h.) was more strongly non-random than juveniles (1–10 cm d.b.h.), suggesting higher juvenile mortality in unsuitable habitats. The dominant species Dipterocarpus sublamellatus (> 50% of stems) was indifferent to substrate, but nine of 11 ‘subdominant’ species (> 8 individuals ha −1 ) were substrate specialists. 5   Eighteen of 22 species were significantly associated with soil nutrients, especially P, Mg and Ca. Floristic variation was significantly correlated with edaphic and geographical distance for all stems ≥ 1 cm d.b.h. in Mantel analyses. However, juvenile variation (1–10 cm d.b.h.) was more strongly related to geographical distance than edaphic factors, while the converse held for established trees (≥ 10 cm d.b.h.), suggesting increased importance of niche processes with size class. 6   Pervasive dipterocarp associations with soil factors suggest that niche partitioning structures dipterocarp tree communities. Yet, much floristic variation unrelated to soil was correlated with geographical distance between plots, suggesting that dispersal and niche processes jointly determine mesoscale beta diversity in the Bornean Dipterocarpaceae. Journal of Ecology (2005) doi: 10.1111/j.1365-2745.2005.01077.xen_US
dc.format.extent241893 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© The Authors Journal compilation © 2005 British Ecological Societyen_US
dc.subject.otherDiversityen_US
dc.subject.otherDominanceen_US
dc.subject.otherMagnesiumen_US
dc.subject.otherMass Effectsen_US
dc.subject.otherMesoscaleen_US
dc.subject.otherNeutralen_US
dc.subject.otherNicheen_US
dc.subject.otherPhosphorusen_US
dc.subject.otherShoreaen_US
dc.titleSoil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest treesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Department of Ecology and Evolutionary Biology, University of Michigan, 830 N. University Avenue, Ann Arbor, MI 48109, USA,en_US
dc.contributor.affiliationum† School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationother† Yale School of Forestry and Environmental Studies, 205 Prospect Street, New Haven, CT 06511, USA, anden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72822/1/j.1365-2745.2005.01077.x.pdf
dc.identifier.doi10.1111/j.1365-2745.2005.01077.xen_US
dc.identifier.sourceJournal of Ecologyen_US
dc.identifier.citedreferenceAshton, P.S. ( 1976 ) Mixed dipterocarp forest and its variation with habitat in the Malayan lowlands: a re-evaluation at Pasoh. Malaysian Forester, 39, 56 – 72.en_US
dc.identifier.citedreferenceAshton, P.S. ( 1982 ) Dipterocarpaceae. Flora Malaesiana, I ( 9 ), 237 – 552.en_US
dc.identifier.citedreferenceAustin, M.P., Ashton, P.S. & Greig-Smith, P. ( 1972 ) The application of quantitative methods to survey vegetation. III. A re-examination of rain forest data from Brunei. Journal of Ecology, 60, 305 – 324.en_US
dc.identifier.citedreferenceBaillie, I.C., Ashton, P.S., Court, M.N., Anderson, J.A.R., Fitzpatrick, E.A. & Tinsley, J. ( 1987 ) Site characteristics and the distribution of tree species in mixed dipterocarp forests on tertiary sediments in Central Sarawak, Malaysia. Journal of Tropical Ecology, 3, 201 – 220.en_US
dc.identifier.citedreferenceBonnet, E. & Van de Peer, Y. ( 2002 ) zt: a software tool for simple and partial Mantel tests. Journal of Statistical Software, 7 ( 10 ), 1 – 12.en_US
dc.identifier.citedreferenceBowman, R. ( 1990 ) A rapid method to determine total phosphorus in soils. Journal of the Soil Science Society of America, 52, 1301 – 1304.en_US
dc.identifier.citedreferenceter Braak, C.J.F. & Smilauer, P. ( 2002 ) canoco Reference Manual and CanoDraw for Windows User's Guide, Software for Canonical Community Ordination Version 4. 5. Microcomputer Power, Ithaca.en_US
dc.identifier.citedreferenceCannon, C. & Leighton, M. ( 2004 ) Tree species distributions across five habitats in a Bornean rainforest. Journal of Vegetation Science, 15, 257 – 266.en_US
dc.identifier.citedreferenceChave, J. & Leigh, E.G. ( 2002 ) A spatially explicit neutral model of β-diversity in tropical forests. Theoretical Population Biology, 62, 153 – 168.en_US
dc.identifier.citedreferenceClark, D.B., Clark, D.A. & Read, J.M. ( 1998 ) Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. Journal of Ecology, 86, 101 – 112.en_US
dc.identifier.citedreferenceClark, D., Clark, D. & Read, J.M. ( 1999 ) Edaphic factors and the landscape-scale distribution of rain forest trees. Ecology, 80, 2662 – 2675.en_US
dc.identifier.citedreferenceCon dit, R., Pitman, N., Leigh, E.G., Chave, J., Terborgh, J., Foster, R. et al. ( 2002 ) Beta-diversity in tropical forest trees. Science, 295, 666 – 669.en_US
dc.identifier.citedreferenceCurran, L.M., Caniago, I., Paoli, G.D., Astiani, D. & Leighton, M. ( 1999 ) Impact of El NiÑo and logging on canopy tree recruitment in Borneo. Science, 286, 2182 – 2188.en_US
dc.identifier.citedreferenceCurran, L.M. & Leighton, M. ( 2000 ) Vertebrate responses to spatio-temporal variation in seed production by mast-fruiting Bornean Dipterocarpaceae. Ecological Monographs, 70, 121 – 150.en_US
dc.identifier.citedreferenceCurran, L.M. & Webb, C.O. ( 2000 ) Spatio-temporal scale of seed predation in mast-fruiting Dipterocarpaceae: experimental studies of regional seed availability. Ecological Monographs, 70, 151 – 171.en_US
dc.identifier.citedreferenceDebski, I., Burslem, D.F.R.P., Palmiotto, P.A., Lafrankie, J.V., Lee, H.S. & Manokaran, N. ( 2002 ) Habitat preferences of Aporosa in two Malaysian forests: implications for abundance and coexistence. Ecology, 83, 2005 – 2018.en_US
dc.identifier.citedreferenceDuque, A., Sanchez, M., Cavalier, J. & Duivenvoorden, J. ( 2002 ) Different floristic patterns of woody understorey and canopy plants in Colombian Amazonia. Journal of Tropical Ecology, 18, 499 – 525.en_US
dc.identifier.citedreferenceFine, P.V.A., Mesones, I. & Coley, P.D. ( 2004 ) Herbivores promote habitat specialization by trees in Amazonian forests. Science, 305, 663 – 665.en_US
dc.identifier.citedreferenceGartlan, J.S., Newbery, D.M., Thomas, D.W. & Waterman, P.G. ( 1986 ) The influence of topography and soil phosphorus on the vegetation of Korup Forest Reserve, Cameroun. Vegetatio, 65, 131 – 148.en_US
dc.identifier.citedreferenceGathorne-Hardy, F.J., Syaukani, Davies, R.G., Eggleton, F. & Jones, D.T. ( 2002 ) Quaternary rain forest refugia in south-east Asia: using termites (Isoptera) as indicators. Biology Journal of the Linnaean Society, 75, 453 – 466.en_US
dc.identifier.citedreferenceGunatilleke, C.V.S., Gunatilleke, I.A.U.N., Perera, G.A.D., Burslem, D.F.R.P., Ashton, P.M.S. & Ashton, P.S. ( 1997 ) Response to nutrient addition among seedlings of eight closely related species of Shorea in Sri Lanka. Journal of Ecology, 85, 301 – 311.en_US
dc.identifier.citedreferenceHall, J.S., McKenna, J.J., Ashton, P.M. & Gregoire, T.G. ( 2004 ) Habitat characterizations underestimate the role of edaphic factors controlling the distribution of Entandrophragma. Ecology, 85, 2171 – 2183.en_US
dc.identifier.citedreferenceHoffman, W.A. & Franco, A.C. ( 2003 ) Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts. Journal of Ecology, 91, 475 – 484.en_US
dc.identifier.citedreferenceHubbell, S. ( 2001 ) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, New Jersey.en_US
dc.identifier.citedreferenceHuston, M.A. ( 1979 ) A general hypothesis of species diversity. American Naturalist, 113, 81 – 101.en_US
dc.identifier.citedreferenceHuston, M.A. ( 1993 ) Biological diversity, soils and economics. Science, 262, 1676 – 1680.en_US
dc.identifier.citedreferenceLegendre, P. & Legendre, L. ( 1998 ) Numerical Ecology. Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceLieberman, D., Lieberman, M., Hartshorn, G.S. & Peralta, R. ( 1985 ) Small-scale altitudinal variation in lowland tropical forest vegetation. Journal of Ecology, 73, 505 – 516.en_US
dc.identifier.citedreferenceLyal, C.H.C. & Curran, L.M. ( 2000 ) Seed-feeding beetles of the weevil tribe Mecysolobini (Insecta: Coleptera: Curculionidae) developing in seeds of trees in the Dipterocarpaceae. Journal of Natural History, 34, 1743 – 1847.en_US
dc.identifier.citedreferenceLyal, C.H.C. & Curran, L.M. ( 2003 ) More than black and white: a new genus nanophyine seed predators of Dipterocarpaceae and a review of Meregallia Alonso-Zarazaga (Coleoptera: Curculionidae: Nanophyidae) in Southeast Asia. Journal of Natural History, 37, 57 – 105.en_US
dc.identifier.citedreferenceNewbery, D.M., Gartlan, J.S., McKey, D.B. & Waterman, P.G. ( 1986 ) The influence of drainage and soil phosphorus on the vegetation of Douala-Edea Forest Reserve, Cameroun. Vegetatio, 65, 149 – 162.en_US
dc.identifier.citedreferenceNewbery, D.M. & Proctor, J. ( 1984 ) Ecological studies in four contrasting rain forests in Gunung Mulu National Park, Sarawak. IV. Associations between tree distribution and soil factors. Journal of Ecology, 72, 475 – 493.en_US
dc.identifier.citedreferenceNewbery, D.M., Renshaw, E. & Brunig, E.F. ( 1986 ) Spatial patterns of trees in kerangas forest, Sarawak. Vegetatio, 65, 77 – 89.en_US
dc.identifier.citedreferenceNewman, M.F., Burgess, P.M. & Whitmore, T.C. ( 1996 ) Borneo Island Light Hardwoods. Royal Botanic Garden Edinburgh and Centre for International Forestry Research, Edinburgh.en_US
dc.identifier.citedreferenceNewman, M.F., Burgess, P.M. & Whitmore, T.C. ( 1998 ) Borneo Island Medium and Heavy Hardwoods. Royal Botanic Garden Edinburgh and Centre for International Forestry Research, Edinburgh.en_US
dc.identifier.citedreferenceOla-Adams, B.A. & Hall, J.B. ( 1987 ) Plant-soil relations in a mature forest inviolate plot at Akure, Nigeria. Journal of Ecology, 3, 57 – 74.en_US
dc.identifier.citedreferenceOlsen, S.R., Cole, C.U., Watanabe, F.S. & Dean, L.A. ( 1954 ) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular, 939, 19.en_US
dc.identifier.citedreferencePalmiotto, P.A., Davies, S.J., Vogt, K.A., Ashton, M.S., Vogt, D.J. & Ashton, P.S. ( 2004 ) Soil-related habitat specialization in dipterocarp rain forest species in Borneo. Journal of Ecology, 92, 609 – 623.en_US
dc.identifier.citedreferencePaoli, G.D. ( 2004 ) C ommunity and ecosystem consequences of tree species turnover along soil nutrient gradients in lowland rain forest of Indonesian Borneo. PhD thesis. University of Michigan, Ann Arbor.en_US
dc.identifier.citedreferencePaoli, G.D., Curran, L.M. & Zak, D.R. ( 2005 ) Phosphorus efficiency of aboveground productivity in Bornean rain forest: evidence against the unimodal response efficiency hypothesis. Ecology, 86, 1548 – 1561.en_US
dc.identifier.citedreferencePhillips, O.L., Vargas, P.N., Monteagudo, A.L., Cruz, A.P., Zans, M.C., Sanchez, W.G. et al. ( 2003 ) Habitat association among Amazonian tree species: a landscape-scale approach. Journal of Ecology, 91, 757 – 775.en_US
dc.identifier.citedreferencePitman, N.C., Terborgh, J., Silman, M.R., NuÑez, P.V., Neill, D.A. & Ceron, C.E. ( 2001 ) Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology, 82, 2101 – 2117.en_US
dc.identifier.citedreferencePotts, M.D., Ashton, P.S., Kaufman, L.S. & Plotkin, J.B. ( 2002 ) Habitat patterns in tropical rain forests: a comparison of 105 plots in northwest Borneo. Ecology, 83, 2782 – 2797.en_US
dc.identifier.citedreferenceProctor, J., Anderson, J.M., Chai, P. & Vallack, W.H. ( 1983 ) Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. I. Forest environment, structure and floristics. Journal of Ecology, 71, 237 – 260.en_US
dc.identifier.citedreferenceRajaniemi, T. ( 2003 ) Explaining productivity-diversity gradients in plants. Oikos, 101, 449 – 457.en_US
dc.identifier.citedreferenceRawls, W.J. ( 1983 ) Estimating soil bulk density from particle size analysis and organic matter content. Soil Science, 135, 123 – 125.en_US
dc.identifier.citedreferenceRogstad, S.H. ( 1990 ) The biosystematics and evolution of the Polyalthia hypoleuca species complex (Annonaceae) of Malesia. II. Comparative distributional ecology. Journal of Tropical Ecology, 6, 387 – 408.en_US
dc.identifier.citedreferenceRuokolainen, K. & Vormisto, J. ( 2000 ) The most widespread Amazonian palms tend to be tall and habitat generalists. Basic and Applied Ecology, 1, 97 – 108.en_US
dc.identifier.citedreferenceSheldrick, B.H. & Wang, C. ( 1993 ) Particle size distribution. Soil Sampling and Methods of Analysis (ed. M.R. Carter ), pp. 499 – 511. Lewis Publishers, Boca Raton.en_US
dc.identifier.citedreferenceShmida, A. & Wilson, M.V. ( 1985 ) Biological determinants of species diversity. Journal of Biogeography, 12, 1 – 20.en_US
dc.identifier.citedreferenceSlik, J.W.F., Poulsen, A.D., Ashton, P.S., Cannon, C.H., Eichhorn, K.A.O., Kartawinata, K. et al. ( 2003 ) A floristic analysis of the lowland dipterocarp forest of Borneo. Journal of Biogeography, 30, 1517 – 1531.en_US
dc.identifier.citedreferenceSollins, M. ( 1998 ) Factors influencing species composition in tropical lowland rain forests: does soil matter? Ecology, 79, 23 – 30.en_US
dc.identifier.citedreferenceter Steege, H., Tetten, V.G., Polak, A.M. & Werger, M.J.A. ( 1993 ) Tropical rain forest types and soil factors in a watershed area in Guyana. Journal of Vegetation Science, 4, 705 – 716.en_US
dc.identifier.citedreferenceSvenning, J.C. ( 1999 ) Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. Journal of Ecology, 87, 55 – 65.en_US
dc.identifier.citedreferenceSwaine, M.D. ( 1996 ) Rainfall and soil fertility as factors limiting forest species distributions in Ghana. Journal of Ecology, 84, 419 – 428.en_US
dc.identifier.citedreferenceTilman, D. ( 1982 ) Resource Competition and Community Structure. Princeton University Press, New Jersey.en_US
dc.identifier.citedreferenceTuomisto, H., Ruokolainen, K. & Yli-Halla, M. ( 2003 ) Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241 – 244.en_US
dc.identifier.citedreferenceValencia, R., Foster, R.B., Villa, G., Con dit, R., Svenning, J., HernÁndez, C. et al. ( 2004 ) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology, 92, 214 – 229.en_US
dc.identifier.citedreferenceVormisto, J., Svenning, J.C., Hall, P. & Balslev, H. ( 2004 ) Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. Journal of Ecology, 92, 577 – 588.en_US
dc.identifier.citedreferenceWebb, C.O. & Curran, L.M. ( 1996 ) A field key to dipterocarp seedlings of the Gunung Palung National Park, West Kalimantan, Indonesia. Tropical Biodiversity, 3, 193 – 225.en_US
dc.identifier.citedreferenceWebb, C.O. & Peart, D.R. ( 2000 ) Habitat associations of trees and seedlings in a Bornean rain forest. Journal of Ecology, 88, 464 – 478.en_US
dc.identifier.citedreferenceYamada, T., Itoh, A., Kanzaki, M., Yamakura, T., Suzuki, E. & Ashton, P.S. ( 2000 ) Local and geographical distributions for a tropical tree genus, Scaphium (Sterculiaceae) in the Far East. Plant Ecology, 148, 23 – 30.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.