Show simple item record

Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition

dc.contributor.authorBlackwood, Christopher B.en_US
dc.contributor.authorWaldrop, Mark P.en_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorSinsabaugh, Robert L.en_US
dc.date.accessioned2010-06-01T19:41:28Z
dc.date.available2010-06-01T19:41:28Z
dc.date.issued2007-05en_US
dc.identifier.citationBlackwood, Christopher B.; Waldrop, Mark P.; Zak, Donald R.; Sinsabaugh, Robert L. (2007). "Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition." Environmental Microbiology 9(5): 1306-1316. <http://hdl.handle.net/2027.42/72825>en_US
dc.identifier.issn1462-2912en_US
dc.identifier.issn1462-2920en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72825
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17472642&dopt=citationen_US
dc.description.abstractThe fungal community of the forest floor was examined as the cause of previously reported increases in soil organic matter due to experimental N deposition in ecosystems producing predominantly high-lignin litter, and the opposite response in ecosystems producing low-lignin litter. The mechanism proposed to explain this phenomenon was that white-rot basidiomycetes are more important in the degradation of high-lignin litter than of low-lignin litter, and that their activity is suppressed by N deposition. We found that forest floor mass in the low-lignin sugar-maple dominated system decreased in October due to experimental N deposition, whereas forest floor mass of high-lignin oak-dominated ecosystems was unaffected by N deposition. Increased relative abundance of basidiomycetes in high-lignin forest floor was confirmed by denaturing gradient gel electrophoresis (DGGE) and sequencing. Abundance of basidiomycete laccase genes, encoding an enzyme used by white-rot basidiomycetes in the degradation of lignin, was 5–10 times greater in high-lignin forest floor than in low-lignin forest floor. While the differences between the fungal communities in different ecosystems were consistent with the proposed mechanism, no significant effects of N deposition were detected on DGGE profiles, laccase gene abundance, laccase length heterogeneity profiles, or phenol oxidase activity. Our observations indicate that the previously detected accumulation of soil organic matter in the high-lignin system may be driven by effects of N deposition on organisms in the mineral soil, rather than on organisms residing in the forest floor. However, studies of in situ gene expression and temporal and spatial variability within forest floor communities will be necessary to further relate the ecosystem dynamics of organic carbon to microbial communities and atmospheric N deposition.en_US
dc.format.extent281661 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2007 The Authors; Journal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltden_US
dc.titleMolecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen depositionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109-1041, USA.en_US
dc.contributor.affiliationotherBiology Department, University of New Mexico, Albuquerque, NM 87131-0001, USA.en_US
dc.identifier.pmid17472642en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72825/1/j.1462-2920.2007.01250.x.pdf
dc.identifier.doi10.1111/j.1462-2920.2007.01250.xen_US
dc.identifier.sourceEnvironmental Microbiologyen_US
dc.identifier.citedreferenceAnderson, I.C., and Cairney, J.W.G. ( 2004 ) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6: 769 – 779.en_US
dc.identifier.citedreferenceBaldrian, P. ( 2006 ) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30: 215 – 242.en_US
dc.identifier.citedreferenceBerg, B., and Matzner, E. ( 1997 ) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5: 1 – 25.en_US
dc.identifier.citedreferenceBlackwood, C.B., Marsh, T., Kim, S., and Paul, E.A. ( 2003 ) Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl Environ Microbiol 69: 926 – 932.en_US
dc.identifier.citedreferenceBurton, A.J., Pregitzer, K.S., Crawford, J.N., Zogg, G.P., and Zak, D.R. ( 2004 ) Simulated chronic NO 3 - deposition reduces soil respiration in northern hardwood forests. Glob Change Biol 10: 1080 – 1091.en_US
dc.identifier.citedreferenceCarreiro, M.M., Sinsabaugh, R.L., Repert, D.A., and Parkhurst, D.F. ( 2000 ) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81: 2359 – 2365.en_US
dc.identifier.citedreferenceChen, D.M., Bastias, B.A., Taylor, A.F.S., and Cairney, J.W.G. ( 2003 ) Identification of laccase-like genes in ectomycorrhizal basidiomycetes and transcription regulation by nitrogen in Piloderma byssinum. New Phytol 157: 547 – 554.en_US
dc.identifier.citedreferenceColwell, R.K. ( 2005 ) EstimateS: statistical estimation of species richness and shared species from sample, version 7.5 user's guide. [WWW document]. URL http://purl.oclc.org/estimates.en_US
dc.identifier.citedreferenceDeForest, J.L., Zak, D.R., Pregitzer, K.S., and Burton, A.J. ( 2004 ) Atmospheric nitrate deposition, microbial community composition, and enzyme activity in Northern hardwood forests. Soil Sci Soc Am J 68: 132 – 138.en_US
dc.identifier.citedreferenceDriscoll, C.T., Lawrence, G.B., Bulger, A.J., Butler, T.J., Cronan, C.S., Eager, C., et al. ( 2001 ) Acidic deposition in the Northeastern United States: sources and inputs, ecosystem effects, and management strategies. Bioscience 51: 180 – 198.en_US
dc.identifier.citedreferenceFenn, M.E., Baron, J.S., Allen, E.B., Rueth, H.M., Nydick, K.R., Geiser, L., et al. ( 2003 ) Ecological effects of nitrogen deposition in the western United States. Bioscience 53: 404 – 420.en_US
dc.identifier.citedreferenceFrey, S.D., Knorr, M., Parrent, J.L., and Simpson, R.T. ( 2004 ) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For Ecol Manage 196: 159 – 171.en_US
dc.identifier.citedreferenceGallo, M., Amonette, R., Lauber, C., Sinsabaugh, R.L., and Zak, D.R. ( 2004 ) Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microb Ecol 48: 218 – 229.en_US
dc.identifier.citedreferenceHatakka, A. ( 2001 ) Biodegradation of lignin. In Biopolymers, Volume 1 Lignin, Humic Substances and Coal. Hofrichter, M., and SteinbÜchel, A. (eds). Weinheim, Germany: Wiley-VCH, pp. 129 – 180.en_US
dc.identifier.citedreferenceHibbett, D.S., and Donoghue, M.J. ( 2001 ) Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in Homobasidiomycetes. Syst Biol 50: 215 – 242.en_US
dc.identifier.citedreferenceHinkelmann, K., and Kempthorne, O. ( 1994 ) Design and Analysis of Experiments, Volume 1, Introduction to Experimental Design. New York, NY, USA: John Wiley & Sons, pp. 428 – 439.en_US
dc.identifier.citedreferenceHolland, E.A., Braswell, B.H., Sulzman, J., and Lamarque, J. ( 2005 ) Nitrogen deposition onto the United States and Western Europe: synthesis of observations and models. Ecol Appl 15: 38 – 57.en_US
dc.identifier.citedreferenceKirk, P.M., Cannon, P.F., David, J.C., and Stalpers, J.A. ( 2001 ) Ainsworth and Bisby's Dictionary of the Fungi, 9th edn. Wallingford, UK: CAB International. [WWW document]. http://www.speciesfungorum.org/Names/fundic.asp.en_US
dc.identifier.citedreferenceKnorr, M., Frey, S.D., and Curtis, P.S. ( 2005 ) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86: 3252 – 3257.en_US
dc.identifier.citedreferenceLudwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. ( 2004 ) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363 – 1371.en_US
dc.identifier.citedreferenceLuis, P., Walther, G., Kellner, H., Martin, F., and Buscot, F. ( 2004 ) Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biol Biochem 36: 1025 – 1036.en_US
dc.identifier.citedreferenceLuis, P., Kellner, H., Zimdars, B., Langer, U., Martin, F., and Buscot, F. ( 2005a ) Patchiness and spatial distribution of laccase genes of ectomycorrhizal, saprotrophic and unknown basidiomycetes in the upper horizons of a mixed forest Cambisol. Microb Ecol 50: 570 – 579.en_US
dc.identifier.citedreferenceLuis, P., Kellner, H., Martin, F., and Buscot, F. ( 2005b ) A molecular method to evaluate basidiomycete laccase gene expression in forest soils. Geoderma 128: 18 – 27.en_US
dc.identifier.citedreferenceMason, J.C., Richards, M., Zimmermann, W., and Broda, P. ( 1988 ) Identification of extracellular proteins from actinomycetes responsible for the solubilization of lignocellulose. Appl Microbiol Biotechnol 28: 276 – 280.en_US
dc.identifier.citedreferencePregitzer, K.S., Zak, D.R., Burton, A.J., Ashby, J.A., and MacDonald, N.W. ( 2004 ) Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry 68: 179 – 197.en_US
dc.identifier.citedreferenceRabinovich, M.L., Bolobova, A.V., and Vasil'chenko, L.G. ( 2004 ) Fungal decomposition of natural aromatic structures and xenobiotics: a review. Appl Biochem Microbiol 40: 1 – 17.en_US
dc.identifier.citedreferenceRirie, K.M., Rasmussen, R.P., and Wittwer, C.T. ( 1997 ) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245: 154 – 160.en_US
dc.identifier.citedreferenceRobertson, C.E., Harris, J.K., Spear, J.R., and Pace, N.R. ( 2005 ) Phylogenetic diversity and ecology of environmental Archaea. Curr Opin Microbiol 8: 638 – 642.en_US
dc.identifier.citedreferenceRyan, M., Melillo, J., and Ricca, A. ( 1990 ) A comparison of methods for determining proximate carbon fractions of forest litter. Can J For Res 20: 166 – 171.en_US
dc.identifier.citedreferenceSaiya-Cork, K.R., Sinsabaugh, R.L., and Zak, D.R. ( 2002 ) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34: 1309 – 1315.en_US
dc.identifier.citedreferenceSchouten, A., Wagemakers, L., Stefanato, F., van der Kaaij, R.M., and van Kan, J.A.L. ( 2002 ) Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Mol Microbiol 43: 883 – 894.en_US
dc.identifier.citedreferenceSinsabaugh, R.L., Carreiro, M.M., and Repert, D.A. ( 2002 ) Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60: 1 – 24.en_US
dc.identifier.citedreferenceVainio, J., and Hantula, J. ( 2000 ) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104: 927 – 936.en_US
dc.identifier.citedreferenceWaldrop, M.W., Zak, D.R., and Sinsabaugh, R.L. ( 2004a ) Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol Biochem 36: 1443 – 1451.en_US
dc.identifier.citedreferenceWaldrop, M.W., Zak, D.R., Sinsabaugh, R.L., Gallo, M., and Lauber, C. ( 2004b ) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14: 1172 – 1177.en_US
dc.identifier.citedreferenceWorrall, J.J., Anagnost, S.E., and Zabel, R.A. ( 1997 ) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89: 199 – 219.en_US
dc.identifier.citedreferenceZak, D.R., and Pregitzer, K.S. ( 1990 ) Spatial and temporal variability of nitrogen cycling in Northern Lower Michigan. For Sci 36: 367 – 380.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.