Show simple item record

Differentiate to thrive: lessons from the Legionella pneumophila life cycle

dc.contributor.authorMolofsky, Ari B.en_US
dc.contributor.authorSwanson, Michele S.en_US
dc.date.accessioned2010-06-01T19:43:15Z
dc.date.available2010-06-01T19:43:15Z
dc.date.issued2004-07en_US
dc.identifier.citationMolofsky, Ari B.; Swanson, Michele S. (2004). "Differentiate to thrive: lessons from the Legionella pneumophila life cycle." Molecular Microbiology 53(1): 29-40. <http://hdl.handle.net/2027.42/72854>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72854
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15225301&dopt=citationen_US
dc.description.abstractWhen confronted by disparate environments, microbes routinely alter their physiology to tolerate or exploit local conditions. But some circumstances require more drastic remodelling of the bacterial cell, as sporulation by the Bacillus and Streptomyces species of soil bacteria vividly illustrates. Cellular differentiation is also crucial for pathogens, the challenge for which is to colonize one host, then be transmitted to the next. Using the Gram-negative Legionella pneumophila as a model intracellular pathogen, we describe how biogenesis of the replication vacuole is determined by the developmental state of the bacterium. Subsequently, when replicating bacteria have exhausted the nutrient supply, the pathogens couple their conversion to stationary phase physiology with expression of traits that promote transmission to a new host. The cellular differentiation of L. pneumophila is co-ordinated by a regulatory circuit that integrates several elements that are broadly conserved in the microbial world. The alarmone (p)ppGpp promotes transcription directed by the alternative sigma factors RpoS, FliA and, probably, RpoN, and also post-transcriptional control mediated by a two-component regulatory system, LetA/S (GacA/S), and an mRNA-binding protein, CsrA (RsmA). By applying knowledge of microbial differentiation in combination with tools to screen the complete genomes of pathogens, experiments can be designed to identify two distinct classes of virulence traits: factors that promote replication and those dedicated to transmission.en_US
dc.format.extent317314 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2004 Blackwell Publishing Ltden_US
dc.titleDifferentiate to thrive: lessons from the Legionella pneumophila life cycleen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, 6734 Medical Sciences Building II, Ann Arbor, MI 48109-0620, USA.en_US
dc.identifier.pmid15225301en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72854/1/j.1365-2958.2004.04129.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2004.04129.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAlli, O. A., Gao, L. Y., Pedersen, L. L., Zink, S., Radulic, M., Doric, M., and Abu Kwaik, Y. ( 2000 ) Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila. Infect Immun 0: 6431 – 6440.en_US
dc.identifier.citedreferenceBachman, M. A., and Swanson, M. S. ( 2001 ) RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol Microbiol 40: 1201 – 1214.en_US
dc.identifier.citedreferenceBachman, M. A., and Swanson, M. S. ( 2004a ) Genetic evidence that Legionella pneumophila RpoS modulates expression of the transmission phenotype in both the exponential phase and the stationary phase. Infect Immun 72: 2468 – 2476.en_US
dc.identifier.citedreferenceBachman, M. A., and Swanson, M. S. ( 2004b ) The LetE protein enhances expression of multiple LetA/LetS-dependent transmission traits by Legionella pneumophilia. Infect Immun 72 (6).en_US
dc.identifier.citedreferenceBerger, K. H., Merriam, J. J., and Isberg, R. I. ( 1994 ) Altered intracellular targeting properties associated with mutations in the Legionella pneumophila dotA gene. Mol Microbiol 14: 809 – 822.en_US
dc.identifier.citedreferenceByrne, B., and Swanson, M. S. ( 1998 ) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66: 3029 – 3034.en_US
dc.identifier.citedreferenceChatterji, D., and Kumar Ojha, A. ( 2001 ) Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol 4: 160 – 165.en_US
dc.identifier.citedreferenceCianciotto, N. P., and Fields, B. S. ( 1992 ) Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci USA 89: 5188 – 5191.en_US
dc.identifier.citedreferenceCirillo, J. D., Cirillo, S. L., Yan, L., Bermudez, L. E., Falkow, S., and Tompkins, L. S. ( 1999 ) Intracellular growth in Acanthamoeba castellanii affects monocyte entry mechanisms and enhances virulence of Legionella pneumophila. Infect Immun 67: 4427 – 4434.en_US
dc.identifier.citedreferenceCirillo, S. L., Bermudez, L. E., El-Etr, S. H., Duhamel, G. E., and Cirillo, J. D. ( 2001 ) Legionella pneumophila entry gene rtxA is involved in virulence. Infect Immun 69: 508 – 517.en_US
dc.identifier.citedreferenceCoers, J., Monahan, C., and Roy, C. R. ( 1999 ) Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth. Nature Cell Biol 1: 451 – 453.en_US
dc.identifier.citedreferenceConover, G. M., Derre, I., Vogel, J. P., and Isberg, R. R. ( 2003 ) The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol Microbiol 48: 305 – 321.en_US
dc.identifier.citedreferenceCotter, P. A., and Jones, A. M. ( 2003 ) Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol 11: 367 – 373.en_US
dc.identifier.citedreferenceDietrich, C., Heuner, K., Brand, B. C., Hacker, J., and Steinert, M. ( 2001 ) Flagellum of Legionella pneumophila positively affects the early phase of infection of eukaryotic host cells. Infect Immun 69: 2116 – 2122.en_US
dc.identifier.citedreferenceDubey, A. K., Baker, C. S., Suzuki, K., Jones, A. D., Pandit, P., Romeo, T., and Babitzke, P. ( 2003 ) CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol 185: 4450 – 4460.en_US
dc.identifier.citedreferenceEichelberg, K., and Galan, J. E. ( 2000 ) The flagellar sigma factor FliA (sigma (28) regulates the expression of Salmonella genes associated with the centisome 63 type III secretion system. Infect Immun 68: 2735 – 2743.en_US
dc.identifier.citedreferenceFarewell, A., Kvint, K., and Nystrom, T. ( 1998 ) Negative regulation by RpoS: a case of sigma factor competition. Mol Microbiol 29: 1039 – 1051.en_US
dc.identifier.citedreferenceFaulkner, G., and Garduno, R. A. ( 2002 ) Ultrastructural analysis of differentiation in Legionella pneumophila. J Bacteriol 184: 7025 – 7041.en_US
dc.identifier.citedreferenceFettes, P. S., Forsbach-Birk, V., Lynch, D., and Marre, R. ( 2001 ) Overexpresssion of a Legionella pneumophila homologue of the E. coli regulator csrA affects cell size, flagellation, and pigmentation. Int J Med Microbiol 291: 353 – 360.en_US
dc.identifier.citedreferenceFields, B. S., Benson, R. F., and Besser, R. E. ( 2002 ) Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev 15: 506 – 526.en_US
dc.identifier.citedreferenceGal-Mor, O., and Segal, G. ( 2003a ) The Legionella pneumophila GacA homolog (LetA) is involved in the regulation of icm virulence genes and is required for intracellular multiplication in Acanthamoeba castellanii. Microb Pathog 34: 187 – 194.en_US
dc.identifier.citedreferenceGal-Mor, O., and Segal, G. ( 2003b ) Identification of CpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila. J Bacteriol 185: 4908 – 4919.en_US
dc.identifier.citedreferenceGal-Mor, O., Zusman, T., and Segal, G. ( 2002 ) Analysis of DNA regulatory elements required for expression of the Legionella pneumophila icm and dot virulence genes. J Bacteriol 184: 3823 – 3833.en_US
dc.identifier.citedreferenceGarduno, R. A., Garduno, E., and Hoffman, P. S. ( 1998 ) Surface-associated hsp60 chaperonin of Legionella pneumophila mediates invasion in a HeLa cell model. Infect Immun 66: 4602 – 4610.en_US
dc.identifier.citedreferenceGarduno, R. A., Garduno, E., Hiltz, M., and Hoffman, P. S. ( 2002 ) Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms. Infect Immun 70: 6273 – 6283.en_US
dc.identifier.citedreferenceGreub, G., and Raoult, D. ( 2003 ) Morphology of Legionella pneumophila according to their location within Hartmanella vermiformis. Res Microbiol 154: 619 – 621.en_US
dc.identifier.citedreferenceHales, L. M., and Shuman, H. A. ( 1999 ) The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J Bacteriol 181: 4879 – 4889.en_US
dc.identifier.citedreferenceHammer, B. K., and Swanson, M. S. ( 1999 ) Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol 33: 721 – 731.en_US
dc.identifier.citedreferenceHammer, B. K., Tateda, E. S., and Swanson, M. S. ( 2002 ) A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol Microbiol 44: 107 – 118.en_US
dc.identifier.citedreferenceHammerschlag, M. R. ( 2002 ) The intracellular life of chlamydiae. Semin Pediatr Infect Dis 13: 239 – 248.en_US
dc.identifier.citedreferenceHaralalka, S., Nandi, S., and Bhadra, R. K. ( 2003 ) Mutation in the relA gene of Vibrio cholerae affects in vitro and in vivo expression of virulence factors. J Bacteriol 185: 4672 – 4682.en_US
dc.identifier.citedreferenceHase, C. C., and Mekalanos, J. J. ( 1999 ) Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 96: 3183 – 3187.en_US
dc.identifier.citedreferenceHeeb, S., and Haas, D. ( 2001 ) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant–Microbe Interact 14: 1351 – 1363.en_US
dc.identifier.citedreferenceHeuner, K., and Steinert, M. ( 2003 ) The flagellum of Legionella pneumophila and its link to the expression of the virulent phenotype. Int J Med Microbiol 293: 133 – 143.en_US
dc.identifier.citedreferenceHeuner, K., Brand, B. C., and Hacker, J. ( 1999 ) The expression of the flagellum of Legionella pneumophila is modulated by different environmental factors. FEMS Microbiol Lett 175: 69 – 77.en_US
dc.identifier.citedreferenceHeuner, K., Dietrich, C., Steinert, M., Gobel, U. B., and Hacker, J. ( 2000 ) Cloning and characterization of a Legionella pneumophila -specific gene encoding a member of the LysR family of transcriptional regulators. Mol Gen Genet 264: 204 – 211.en_US
dc.identifier.citedreferenceHeuner, K., Dietrich, C., Skriwan, C., Steinert, M., and Hacker, J. ( 2002 ) Influence of the alternative sigma (28) factor on virulence and flagellum expression of Legionella pneumophila. Infect Immun 70: 1604 – 1608.en_US
dc.identifier.citedreferenceHiltz, M. F., Sisson, G. R., Brassinga, A. K. C., Garduno, E., Garduno, R. A., and Hoffman, P. S. ( 2004 ) Expression of magA in Legionella pneumophila Philadelphia-1 is developmentally regulated and a marker of formation of mature intracellular forms. J Bacteriol 186 (10).en_US
dc.identifier.citedreferenceHorwitz, M. A. ( 1983a ) The Legionnaires’ disease bacterium ( Legionella pneumophila ) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med 158: 2108 – 2126.en_US
dc.identifier.citedreferenceHorwitz, M. A. ( 1983b ) Formation of a novel phagosome by the Legionnaires’ disease bacterium ( Legionella pneumophila ) in human monocytes. J Exp Med 158: 1319 – 1331.en_US
dc.identifier.citedreferenceJacobi, S., Schade, R., and Heuner, K. ( 2004 ) Characterization of the alternative sigma factor (54) and the transcriptional regulator FleQ of Legionella pneumophila, which are both involved in the regulation cascade of flagellar gene expression. J Bacteriol 186: 2540 – 2547.en_US
dc.identifier.citedreferenceJishage, M., Kvint, K., Shingler, V., and Nystrom, T. ( 2002 ) Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev 16: 1260 – 1270.en_US
dc.identifier.citedreferenceJoshi, A. D., Sturgill-Koszycki, S., and Swanson, M. S. ( 2001 ) Evidence that Dot-dependent and – independent factors isolate the Legionella pneumophila phagosome from the endocytic network in mouse macrophages. Cell Microbiol 3: 99 – 114.en_US
dc.identifier.citedreferenceKagan, J. C., and Roy, C. R. ( 2002 ) Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nature Cell Biol 4: 945 – 954.en_US
dc.identifier.citedreferenceLaurie, A. D., Bernardo, L. M., Sze, C. C., Skarfstad, E., Szalewska-Palasz, A., Nystrom, T., and Shingler, V. ( 2003 ) The role of the alarmone (p)ppGpp in sigma N competition for core RNA polymerase. J Biol Chem 278: 1494 – 1503.en_US
dc.identifier.citedreferenceLawhon, S. D., Frye, J. G., Suyemoto, M., Porwollik, S., McClelland, M., and Altier, C. ( 2003 ) Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol 48: 1633 – 1645.en_US
dc.identifier.citedreferenceLiu, M. Y., and Romeo, T. ( 1997 ) The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. J Bacteriol 179: 4639 – 4642.en_US
dc.identifier.citedreferenceLuo, Z. Q., and Isberg, R. R. ( 2004 ) Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci USA 101: 841 – 846.en_US
dc.identifier.citedreferenceLynch, D., Fieser, N., Gloggler, K., Forsbach-Birk, V., and Marre, R. ( 2003 ) The response regulator LetA regulates the stationary-phase stress response in Legionella pneumophila and is required for efficient infection of Acanthamoeba castellanii. FEMS Microbiol Lett 219: 241 – 248.en_US
dc.identifier.citedreferenceMolmeret, M., Zink, S. D., Han, L., Abu-Zant, A., Asari, R., Bitar, D. M., and Abu Kwaik, Y. ( 2004 ) Activation of caspase-3 by the Dot/Icm virulence system is essential for arrested biogenesis of the Legionella -containing phagosome. Cell Microbiol 6: 33 – 48.en_US
dc.identifier.citedreferenceMolofsky, A. B., and Swanson, M. S. ( 2003 ) Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol 50: 445 – 461.en_US
dc.identifier.citedreferenceNagai, H., and Roy, C. R. ( 2001 ) The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO J 20: 5962 – 5970.en_US
dc.identifier.citedreferenceNagai, H., Kagan, J. C., Zhu, X., Kahn, R. A., and Roy, C. R. ( 2002 ) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295: 679 – 682.en_US
dc.identifier.citedreferenceOkada, Y., Makino, S., Tobe, T., Okada, N., and Yamazaki, S. ( 2002 ) Cloning of rel from Listeria monocytogenes as an osmotolerance involvement gene. Appl Environ Microbiol 68: 1541 – 1547.en_US
dc.identifier.citedreferencePrimm, T. P., Andersen, S. J., Mizrahi, V., Avarbock, D., Rubin, H., and Barry, C. E., III ( 2000 ) The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 182: 4889 – 4898.en_US
dc.identifier.citedreferenceRomeo, T. ( 1998 ) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29: 1321 – 1330.en_US
dc.identifier.citedreferenceRowbotham, T. J. ( 1986 ) Current views on the relationships between amoebae, legionellae and man. Isr J Med Sci 22: 678 – 689.en_US
dc.identifier.citedreferenceRoy, C. R., Berger, K. H., and Isberg, R. R. ( 1998 ) Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 28: 663 – 674.en_US
dc.identifier.citedreferenceSamuel, J. E., Kiss, K., and Varghees, S. ( 2003 ) Molecular pathogenesis of Coxiella burnetii in a genomics era. Ann NY Acad Sci 990: 653 – 663.en_US
dc.identifier.citedreferenceSegal, G., and Shuman, H. A. ( 1998 ) Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010. Mol Microbiol 30: 197 – 208.en_US
dc.identifier.citedreferenceSexton, J. A., and Vogel, J. P. ( 2002 ) Type IVB secretion by intracellular pathogens. Traffic 3: 178 – 185.en_US
dc.identifier.citedreferenceSturgill-Koszycki, S., and Swanson, M. S. ( 2000 ) Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. J Exp Med 192: 1261 – 1272.en_US
dc.identifier.citedreferenceSwanson, M., and Fernandez-Moreira, E. ( 2002 ) A microbial strategy to multiply in macrophages: the pregnant pause. Traffic 3: 170 – 177.en_US
dc.identifier.citedreferenceSwanson, M. S., and Hammer, B. K. ( 2000 ) Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54: 567 – 613.en_US
dc.identifier.citedreferenceSwanson, M. S., and Isberg, R. R. ( 1995 ) Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect Immun 63: 3609 – 3620.en_US
dc.identifier.citedreferenceTaylor, C. M., Beresford, M., Epton, H. A., Sigee, D. C., Shama, G., Andrew, P. W., and Roberts, I. S. ( 2002 ) Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J Bacteriol 184: 621 – 628.en_US
dc.identifier.citedreferenceVogel, J. P., Andrews, H. L., Wong, S. K., and Isberg, R. R. ( 1998 ) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279: 873 – 876.en_US
dc.identifier.citedreferenceWatarai, M., Andrews, H. L., and Isberg, R. R. ( 2001a ) Formation of a fibrous structure on the surface of Legionella pneumophila associated with exposure of DotH and DotO proteins after intracellular growth. Mol Microbiol 39: 313 – 329.en_US
dc.identifier.citedreferenceWatarai, M., Derre, I., Kirby, J., Growney, J. D., Dietrich, W. F., and Isberg, R. R. ( 2001b ) Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J Exp Med 194: 1081 – 1096.en_US
dc.identifier.citedreferenceWei, B. L., Brun-Zinkernagel, A. M., Simecka, J. W., Pruss, B. M., Babitzke, P., and Romeo, T. ( 2001 ) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40: 245 – 256.en_US
dc.identifier.citedreferenceWieland, H., Faigle, M., Lang, F., Northoff, H., and Neumeister, B. ( 2002 ) Regulation of the Legionella mip-promoter during infection of human monocytes. FEMS Microbiol Lett 212: 127 – 132.en_US
dc.identifier.citedreferenceZusman, T., Gal-Mor, O., and Segal, G. ( 2002 ) Characterization of a Legionella pneumophila relA insertion mutant and roles of RelA and RpoS in virulence gene expression. J Bacteriol 184: 67 – 75.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.