Show simple item record

The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner

dc.contributor.authorVertommen, Didieren_US
dc.contributor.authorDepuydt, Matthieuen_US
dc.contributor.authorPan, Jonathanen_US
dc.contributor.authorLeverrier, Paulineen_US
dc.contributor.authorKnoops, Laurenten_US
dc.contributor.authorSzikora, Jean-Pierreen_US
dc.contributor.authorMessens, Jorisen_US
dc.contributor.authorBardwell, James C. A.en_US
dc.contributor.authorCollet, Jean-Francoisen_US
dc.date.accessioned2010-06-01T19:45:40Z
dc.date.available2010-06-01T19:45:40Z
dc.date.issued2008-01en_US
dc.identifier.citationVertommen, Didier; Depuydt, Matthieu; Pan, Jonathan; Leverrier, Pauline; Knoops, Laurent; Szikora, Jean-Pierre; Messens, Joris; Bardwell, James C. A.; Collet, Jean-Francois (2008). "The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner." Molecular Microbiology 67(2): 336-349. <http://hdl.handle.net/2027.42/72894>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72894
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18036138&dopt=citationen_US
dc.description.abstractIn Escherichia coli , DsbA introduces disulphide bonds into secreted proteins. DsbA is recycled by DsbB, which generates disulphides from quinone reduction. DsbA is not known to have any proofreading activity and can form incorrect disulphides in proteins with multiple cysteines. These incorrect disulphides are thought to be corrected by a protein disulphide isomerase, DsbC, which is kept in the reduced and active configuration by DsbD. The DsbC/DsbD isomerization pathway is considered to be isolated from the DsbA/DsbB pathway. We show that the DsbC and DsbA pathways are more intimately connected than previously thought. dsbA - dsbC - mutants have a number of phenotypes not exhibited by either dsbA - , dsbC - or dsbA - dsbD - mutations: they exhibit an increased permeability of the outer membrane, are resistant to the lambdoid phage φ80, and are unable to assemble the maltoporin LamB. Using differential two-dimensional liquid chromatographic tandem mass spectrometry/mass spectrometry analysis, we estimated the abundance of about 130 secreted proteins in various dsb - strains. dsbA - dsbC - mutants exhibit unique changes at the protein level that are not exhibited by dsbA - dsbD - mutants. Our data indicate that DsbC can assist DsbA in a DsbD-independent manner to oxidatively fold envelope proteins. The view that DsbC's function is limited to the disulphide isomerization pathway should therefore be reinterpreted.en_US
dc.format.extent279286 bytes
dc.format.extent279286 bytes
dc.format.extent335209 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2007 The Authors; Journal compilation © 2007 Blackwell Publishing Ltden_US
dc.titleThe disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manneren_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumHoward Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109-1048, USA.en_US
dc.contributor.affiliationotherde Duve Institute, UniversitÉ catholique de Louvain, B-1200 Brussels, Belgium.en_US
dc.contributor.affiliationotherCliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium.en_US
dc.contributor.affiliationotherUltrastructure Laboratory, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.en_US
dc.contributor.affiliationotherBrussels Center for Redox Biology, Brussels, Belgium.en_US
dc.contributor.affiliationotherDepartment of Molecular and Cellular Interactions, VIB, B-1050, Brussels, Belgium.en_US
dc.identifier.pmid18036138en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/1/MMI_6030_sm_Tables_S1-S4.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/2/MMI_tables_s1-s4.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/3/j.1365-2958.2007.06030.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2007.06030.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAltermark, B., Smalas, A.O., Willassen, N.P., and Helland, R. ( 2006 ) The structure of Vibrio cholerae extracellular endonuclease I reveals the presence of a buried chloride ion. Acta Crystallogr D Biol Crystallogr 62: 1387 – 1391.en_US
dc.identifier.citedreferenceAndersen, C.L., Matthey-Dupraz, A., Missiakas, D., and Raina, S. ( 1997 ) A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins. Mol Microbiol 26: 121 – 132.en_US
dc.identifier.citedreferenceBader, M., Muse, W., Ballou, D.P., Gassner, C., and Bardwell, J.C. ( 1999 ) Oxidative protein folding is driven by the electron transport system. Cell 98: 217 – 227.en_US
dc.identifier.citedreferenceBader, M.W., Hiniker, A., Regeimbal, J., Goldstone, D., Haebel, P.W., Riemer, J., et al. ( 2001 ) Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA. EMBO J 20: 1555 – 1562.en_US
dc.identifier.citedreferenceBardwell, J.C., McGovern, K., and Beckwith, J. ( 1991 ) Identification of a protein required for disulfide bond formation in vivo. Cell 67: 581 – 589.en_US
dc.identifier.citedreferenceBardwell, J.C., Lee, J.O., Jander, G., Martin, N., Belin, D., and Beckwith, J. ( 1993 ) A pathway for disulfide bond formation in vivo. Proc Natl Acad Sci USA 90: 1038 – 1042.en_US
dc.identifier.citedreferenceBerkmen, M., Boyd, D., and Beckwith, J. ( 2005 ) The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. J Biol Chem 280: 11387 – 11394.en_US
dc.identifier.citedreferenceBessette, P.H., Cotto, J.J., Gilbert, H.F., and Georgiou, G. ( 1999 ) In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG. J Biol Chem 274: 7784 – 7792.en_US
dc.identifier.citedreferenceBordes, P., Bouvier, J., Conter, A., Kolb, A., and Gutierrez, C. ( 2002 ) Transient repressor effect of Fis on the growth phase-regulated osmE promoter of Escherichia coli K12. Mol Genet Genomics 268: 206 – 213.en_US
dc.identifier.citedreferenceBos, C., Lorenzen, D., and Braun, V. ( 1998 ) Specific in vivo labeling of cell surface-exposed protein loops: reactive cysteines in the predicted gating loop mark a ferrichrome binding site and a ligand-induced conformational change of the Escherichia coli FhuA protein. J Bacteriol 180: 605 – 613.en_US
dc.identifier.citedreferenceChilcott, G.S., and Hughes, K.T. ( 2000 ) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64: 694 – 708.en_US
dc.identifier.citedreferenceCho, S.H., and Beckwith, J. ( 2006 ) Mutations of the membrane-bound disulfide reductase DsbD that block electron transfer steps from cytoplasm to periplasm in Escherichia coli. J Bacteriol 188: 5066 – 5076.en_US
dc.identifier.citedreferenceCollet, J.F., and Bardwell, J.C. ( 2002 ) Oxidative protein folding in bacteria. Mol Microbiol 44: 1 – 8.en_US
dc.identifier.citedreferenceCollet, J.F., Riemer, J., Bader, M.W., and Bardwell, J.C. ( 2002 ) Reconstitution of a disulfide isomerization system. J Biol Chem 277: 26886 – 26892.en_US
dc.identifier.citedreferenceDailey, F.E., and Berg, H.C. ( 1993 ) Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proc Natl Acad Sci USA 90: 1043 – 1047.en_US
dc.identifier.citedreferenceDuguay, A.R., and Silhavy, T.J. ( 2002 ) Signal sequence mutations as tools for the characterization of LamB folding intermediates. J Bacteriol 184: 6918 – 6928.en_US
dc.identifier.citedreferenceFerenci, T., and Stretton, S. ( 1989 ) Cysteine-22 and cysteine-38 are not essential for the functions of maltoporin (LamB protein). FEMS Microbiol Lett 52: 335 – 339.en_US
dc.identifier.citedreferenceGruber, C.W., Cemazar, M., Heras, B., Martin, J.L., and Craik, D.J. ( 2006 ) Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 31: 455 – 464.en_US
dc.identifier.citedreferenceHagenmaier, S., Stierhof, Y.D., and Henning, U. ( 1997 ) A new periplasmic protein of Escherichia coli which is synthesized in spheroplasts but not in intact cells. J Bacteriol 179: 2073 – 2076.en_US
dc.identifier.citedreferenceHeras, B., Edeling, M.A., Schirra, H.J., Raina, S., and Martin, J.L. ( 2004 ) Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide. Proc Natl Acad Sci USA 101: 8876 – 8881.en_US
dc.identifier.citedreferenceHiniker, A., and Bardwell, J.C. ( 2004 ) In vivo substrate specificity of periplasmic disulfide oxidoreductases. J Biol Chem 279: 12967 – 12973.en_US
dc.identifier.citedreferenceHiniker, A., Collet, J.F., and Bardwell, J.C. ( 2005 ) Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J Biol Chem 280: 33785 – 33791.en_US
dc.identifier.citedreferenceHiniker, A., Vertommen, D., Bardwell, J.C., and Collet, J.F. ( 2006 ) Evidence for conformational changes within DsbD: possible role for membrane-embedded proline residues. J Bacteriol 188: 7317 – 7320.en_US
dc.identifier.citedreferenceHiniker, A., Ren, G., Heras, B., Zheng, Y., Laurinec, S., Jobson, R.W., et al. ( 2007 ) Laboratory evolution of one disulfide isomerase to resemble another. Proc Natl Acad Sci USA 104: 11670 – 11675.en_US
dc.identifier.citedreferenceInaba, K., Murakami, S., Suzuki, M., Nakagawa, A., Yamashita, E., Okada, K., and Ito, K. ( 2006 ) Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell 127: 789 – 801.en_US
dc.identifier.citedreferenceKadokura, H., Tian, H., Zander, T., Bardwell, J.C., and Beckwith, J. ( 2004 ) Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science 303: 534 – 537.en_US
dc.identifier.citedreferenceKatzen, F., and Beckwith, J. ( 2000 ) Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 103: 769 – 779.en_US
dc.identifier.citedreferenceLange, R., Barth, M., and Hengge-Aronis, R. ( 1993 ) Complex transcriptional control of the sigma s-dependent stationary-phase-induced and osmotically regulated osmY (csi-5) gene suggests novel roles for Lrp, cyclic AMP (cAMP) receptor protein-cAMP complex, and integration host factor in the stationary-phase response of Escherichia coli. J Bacteriol 175: 7910 – 7917.en_US
dc.identifier.citedreferenceLeichert, L.I., and Jakob, U. ( 2004 ) Protein thiol modifications visualized in vivo. PLoS Biol 2: e333.en_US
dc.identifier.citedreferenceLiu, H., Sadygov, R.G., and Yates, J.R., 3rd ( 2004 ) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76: 4193 – 4201.en_US
dc.identifier.citedreferenceLiu, X., and Wang, C.C. ( 2001 ) Disulfide-dependent folding and export of Escherichia coli DsbC. J Biol Chem 276: 1146 – 1151.en_US
dc.identifier.citedreferenceMecsas, J., Rouviere, P.E., Erickson, J.W., Donohue, T.J., and Gross, C.A. ( 1993 ) The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev 7: 2618 – 2628.en_US
dc.identifier.citedreferenceMessens, J., and Collet, J.F. ( 2006 ) Pathways of disulfide bond formation in Escherichia coli. Int J Biochem Cell Biol 38: 1050 – 1062.en_US
dc.identifier.citedreferenceMessens, J., Collet, J.F., Van Belle, K., Brosens, E., Loris, R., and Wyns, L. ( 2007 ) The oxidase DsbA folds a protein with a nonconsecutive disulfide. J Biol Chem 282: 31302 – 31307.en_US
dc.identifier.citedreferenceOld, W.M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K.G., Mendoza, A., Sevinsky, J.R., et al. ( 2005 ) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4: 1487 – 1502.en_US
dc.identifier.citedreferencePugsley, A.P. ( 1993 ) A mutation in the dsbA gene coding for periplasmic disulfide oxidoreductase reduces transcription of the Escherichia coli ompF gene. Mol Gen Genet 237: 407 – 411.en_US
dc.identifier.citedreferenceRepoila, F., and Gutierrez, C. ( 1991 ) Osmotic induction of the periplasmic trehalase in Escherichia coli K12: characterization of the treA gene promoter. Mol Microbiol 5: 747 – 755.en_US
dc.identifier.citedreferenceRietsch, A., Belin, D., Martin, N., and Beckwith, J. ( 1996 ) An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc Natl Acad Sci USA 93: 13048 – 13053.en_US
dc.identifier.citedreferenceRozhkova, A., Stirnimann, C.U., Frei, P., Grauschopf, U., Brunisholz, R., Grutter, M.G., et al. ( 2004 ) Structural basis and kinetics of inter- and intramolecular disulfide exchange in the redox catalyst DsbD. EMBO J 23: 1709 – 1719.en_US
dc.identifier.citedreferenceRuiz, N., and Silhavy, T.J. ( 2005 ) Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol 8: 122 – 126.en_US
dc.identifier.citedreferenceSevier, C.S., and Kaiser, C.A. ( 2006 ) Conservation and diversity of the cellular disulfide bond formation pathways. Antioxid Redox Signal 8: 797 – 811.en_US
dc.identifier.citedreferenceZapun, A., Missiakas, D., Raina, S., and Creighton, T.E. ( 1995 ) Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry 34: 5075 – 5089.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.