Show simple item record

Dynamic amino acid increases in the basolateral amygdala during acquisition and expression of conditioned fear

dc.contributor.authorVenton, Barbara Jillen_US
dc.contributor.authorRobinson, Terry E.en_US
dc.contributor.authorKennedy, Robert T.en_US
dc.contributor.authorMaren, Stephenen_US
dc.date.accessioned2010-06-01T19:46:38Z
dc.date.available2010-06-01T19:46:38Z
dc.date.issued2006-06en_US
dc.identifier.citationVenton, B. Jill; Robinson, Terry E.; Kennedy, Robert T.; Maren, Stephen (2006). "Dynamic amino acid increases in the basolateral amygdala during acquisition and expression of conditioned fear." European Journal of Neuroscience 23(12): 3391-3398. <http://hdl.handle.net/2027.42/72910>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72910
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16820029&dopt=citationen_US
dc.description.abstractGlutamate and γ-aminobutyric acid (GABA) release in the amygdala are thought to be crucial for the acquisition and expression of fear memories, but the time course of amino acid changes during conditioning is unknown. We used rapid-sampling microdialysis with 14 s temporal resolution to address this issue. During auditory fear conditioning, large, rapid and transient increases in glutamate and GABA were detected, but only during the first noise–shock pairing. In contrast, rats receiving unsignaled shocks during contextual fear conditioning showed no changes in GABA and less glutamate release for the initial shock, but increased glutamate release during later shocks. Expression of conditioned fear to either a white noise or the context previously paired with shock produced similar rapid and transient increases in many amino acids in the amygdala. These experiments demonstrate glutamate and GABA levels in the amygdala are differentially modulated during auditory and contextual fear learning, and are transiently increased during the expression of fear memories.en_US
dc.format.extent250289 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsThe Authors (2006). Journal Compilation Federation of European Neuroscience Societies and Blackwell Publishing Ltden_US
dc.subject.otherAspartateen_US
dc.subject.otherCapillary Electrophoresisen_US
dc.subject.otherGABAen_US
dc.subject.otherGlutamateen_US
dc.subject.otherGlycineen_US
dc.subject.otherPlasticityen_US
dc.subject.otherTaurineen_US
dc.titleDynamic amino acid increases in the basolateral amygdala during acquisition and expression of conditioned fearen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USAen_US
dc.contributor.affiliationumDepartment of Psychology and Neuroscience Program, University of Michigan, 530 Church St, Ann Arbor, MI 48109-1043, USAen_US
dc.contributor.affiliationumDepartment of Pharmacology, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USAen_US
dc.identifier.pmid16820029en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72910/1/j.1460-9568.2006.04841.x.pdf
dc.identifier.doi10.1111/j.1460-9568.2006.04841.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceBlair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M. & LeDoux, J. E. ( 2001 ) Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem., 8, 229 – 242.en_US
dc.identifier.citedreferenceBowser, M. T. & Kennedy, R. T. ( 2001 ) In vivo monitoring of amine neurotransmitters using microdialysis with on-line capillary electrophoresis. Electrophoresis, 22, 3668 – 3676.en_US
dc.identifier.citedreferenceChhatwal, J. P., Myers, K. M., Ressler, K. J. & Davis, M. ( 2005 ) Regulation of gephyrin and GABA A receptor binding within the amygdala after fear acquisition and extinction. J. Neurosci., 25, 502 – 506.en_US
dc.identifier.citedreferenceDel Arco, A. & Mora, F. ( 1999 ) Effects of endogenous glutamate on extracellular concentrations of GABA, dopamine, and dopamine metabolites in the prefrontal cortex of the freely moving rat: involvement of NMDA and AMPA/KA receptors. Neurochem. Res., 24, 1027 – 1035.en_US
dc.identifier.citedreferenceDel Arco, A., Segovia, G. & Mora, F. ( 2000 ) Effects of endogenous glutamate on extracellular concentrations of taurine in striatum and nucleus accumbens of the awake rat: involvement of NMDA and AMPA/kainate receptors. Amino Acids, 19, 729 – 738.en_US
dc.identifier.citedreferenceFanselow, M. S. ( 1990 ) Factors governing one-trial contextual conditioning. Anim Learn. Behav., 18, 264 – 270.en_US
dc.identifier.citedreferenceFanselow, M. S. & Kim, J. J. ( 1994 ) Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric acid to the basolateral amygdala. Behav. Neurosci., 108, 210 – 212.en_US
dc.identifier.citedreferenceFanselow, M. S. & LeDoux, J. E. ( 1999 ) Why we think plasticity underlying pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 23, 229 – 232.en_US
dc.identifier.citedreferenceGoosens, K. A. & Maren, S. ( 2001 ) Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn. Mem., 8, 148 – 155.en_US
dc.identifier.citedreferenceGoosens, K. A. & Maren, S. ( 2004 ) NMDA receptors are essential for the acquisition, but not expression, of conditional fear and associative spike firing in the lateral amygdala. Eur. J. Neurosci., 20, 537 – 548.en_US
dc.identifier.citedreferenceLeDoux, J. E. ( 2000 ) Emotion circuits in the brain. Ann. Rev. Neurosci., 23, 155 – 184.en_US
dc.identifier.citedreferenceMaren, S. ( 1996 ) Synaptic transmission and plasticity in the amygdala – an emerging physiology of fear conditioning circuits. Mol. Neurobiol., 13, 1 – 22.en_US
dc.identifier.citedreferenceMaren, S. ( 1998 ) Overtraining does not mitigate contextual fear conditioning deficits produced by neurotoxic lesions of the basolateral amygdala. J. Neurosci., 18, 3088 – 3097.en_US
dc.identifier.citedreferenceMaren, S. ( 1999 ) Neurotoxic basolateral amygdala lesions impair learning and memory but not the performance of conditional fear in rats. J. Neurosci., 19, 8696 – 8703.en_US
dc.identifier.citedreferenceMaren, S. ( 2001 ) Neurobiology of Pavlovian fear conditioning. Ann. Rev. Neurosci., 24, 897 – 931.en_US
dc.identifier.citedreferenceMaren, S., Aharonov, G., Stote, D. L. & Fanselow, M. S. ( 1996 ) N-methyl-D-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats. Behav. Neurosci., 110, 1365 – 1374.en_US
dc.identifier.citedreferenceMaren, S. & Quirk, G. J. ( 2004 ) Neuronal signalling of fear memory. Nat. Rev. Neurosci., 5, 844 – 852.en_US
dc.identifier.citedreferenceMcCool, B. A. & Botting, S. K. ( 2000 ) Characterization of strychnine-sensitive glycine receptors in acutely isolated adult rat basolateral amygdala neurons. Brain Res., 859, 341 – 351.en_US
dc.identifier.citedreferenceMiserendino, M. J., Sananes, C. B., Melia, K. R. & Davis, M. ( 1990 ) Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature, 345, 716 – 718.en_US
dc.identifier.citedreferenceMuller, J., Corodimas, K. P., Fridel, Z. & LeDoux, J. E. ( 1997 ) Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit conditioned stimulus and to contextual stimuli. Behav. Neurosci., 111, 683 – 691.en_US
dc.identifier.citedreferenceNader, K., Schafe, G. E. & LeDoux, J. E. ( 2000 ) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406, 722 – 726.en_US
dc.identifier.citedreferencePaez, X. & Hernandez, L. ( 2001 ) Biomedical applications of capillary electrophoresis with laser-induced fluorescence detection. Biopharm. Drug Dispos., 22, 273 – 289.en_US
dc.identifier.citedreferenceParrot, S., Bert, L., Mouly-Badina, L., Sauvinet, V., Colussi-Mas, J., Lambas-Senas, L., Robert, F., Bouilloux, J. P., Suaud-Chagny, M. F., Denoroy, L. & Renaud, B. ( 2003 ) Microdialysis monitoring of catecholamines and excitatory amino acids in the rat and mouse brain: recent developments based on capillary electrophoresis with laser-induced fluorescence detection – a mini-review. Cell. Mol. Neurobiol., 23, 793 – 804.en_US
dc.identifier.citedreferencePaxinos, G. & Watson, C. ( 1998 ) The Rat Brain in Stereotaxic Coordinates. Academic Press, New York.en_US
dc.identifier.citedreferenceRescorla, R. A. & Wagner, A. R. ( 1972 ) A Theory of Pavlovian Conditioning: Variations in the Effectiveness of Reinforcement and Nonreinforcement. Appleton-Century-Crofts, New York.en_US
dc.identifier.citedreferenceShackman, J. G., Watson, C. J. & Kennedy, R. T. ( 2004 ) High-throughput automated post-processing of separation data. J. Chrom. A, 1040, 273 – 282.en_US
dc.identifier.citedreferenceStork, O., Ji, F. Y. & Obata, K. ( 2002 ) Reduction of extracellular GABA in the mouse amygdala during and following confrontation with a conditioned fear stimulus. Neurosci. Lett., 327, 138 – 142.en_US
dc.identifier.citedreferenceTucci, S., Rada, P. & Hernandez, L. ( 1998 ) Role of glutamate in the amygdala and lateral hypothalamus in conditioned taste aversion. Brain Res., 813, 44 – 49.en_US
dc.identifier.citedreferenceVenton, B. J., Robinson, T. E. & Kennedy, R. T. ( 2006 ) Transient changes in nucleus accumbens amino acid concentrations correlate with individual responsivity to the predator fox odor 2,5-dihydro-2,4,5-trimethylthiazoline. J. Neurochem., 96, 236 – 246.en_US
dc.identifier.citedreferenceWalker, D. L. & Davis, M. ( 2002 ) The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharm. Biochem. Behav., 71, 379 – 392.en_US
dc.identifier.citedreferenceWilensky, A. E., Schafe, G. E. & LeDoux, J. E. ( 1999 ) Functional inactivation of the amygdala before but not after auditory fear conditioning prevents memory formation. J. Neurosci., 19, RC48, 1 – 5.en_US
dc.identifier.citedreferenceYokoyama, M., Suzuki, E., Sato, T., Maruta, S., Watanabe, S. & Miyaoka, H. ( 2005 ) Amygdalic levels of dopamine and serotonin rise upon exposure to conditioned fear stress without elevation of glutamate. Neurosci. Lett., 379, 37 – 41.en_US
dc.identifier.citedreferenceYoung, A. M. J. ( 2004 ) Increased extracellular dopamine in nucleus accumbens in response to unconditioned and conditioned aversive stimuli: studies using 1 min microdialysis in rats. J. Neurosci. Meth., 138, 57 – 63.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.