Show simple item record

Composition of the early Oligocene ocean from coral stable isotope and elemental chemistry

dc.contributor.authorIvany, Linda C.en_US
dc.contributor.authorPeters, Stephen C.en_US
dc.contributor.authorWilkinson, Bruce H.en_US
dc.contributor.authorLohmann, Kyger C.en_US
dc.contributor.authorReimer, Beth A.en_US
dc.date.accessioned2010-06-01T19:46:52Z
dc.date.available2010-06-01T19:46:52Z
dc.date.issued2004-04en_US
dc.identifier.citationIVANY, LINDA C.; PETERS, STEPHEN C.; WILKINSON, BRUCE H.; LOHMANN, KYGER C.; REIMER, BETH A. (2004). "Composition of the early Oligocene ocean from coral stable isotope and elemental chemistry." Geobiology 2(2): 97-106. <http://hdl.handle.net/2027.42/72914>en_US
dc.identifier.issn1472-4677en_US
dc.identifier.issn1472-4669en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72914
dc.description.abstractA sectioned and polished specimen of the coral Archohelia vicksburgensis from the early Oligocene Byram Formation (∼30 Ma) near Vicksburg, Mississippi, reveals 12 prominent annual growth bands. Stable oxygen isotopic compositions of 77 growth-band-parallel microsamples of original aragonite exhibit well-constrained fluctuations that range between −2.0 and −4.8. Variation in Δ 18 O of coral carbonate reflects seasonal variation in temperature ranging from 12 to 24 °C about a mean of 18 °C. These values are consistent with those derived from a bivalve and a fish otolith from the same unit, each using independently derived palaeotemperature equations. Mg/Ca and Sr/Ca ratios were determined for 40 additional samples spanning five of the 12 annual bands. Palaeotemperatures calculated using elemental-ratio thermometers calibrated on modern corals are consistently lower; mean temperature from Mg/Ca ratios are 12.5 ± 1 °C while those from Sr/Ca are 5.8 ± 2.2 °C. Assuming that Δ 18 O-derived temperatures are correct, relationships between temperature and elemental ratio for corals growing in today's ocean can be used to estimate Oligocene palaeoseawater Mg/Ca and Sr/Ca ratios. Calculations indicate that early Oligocene seawater Mg/Ca was ∼81% (4.2 mol mol −1 ) and Sr/Ca ∼109% (9.9 mmol mol −1 ) of modern values. Oligocene seawater with this degree of Mg depletion and Sr enrichment is in good agreement with that expected during the Palaeogene transition from ‘calcite’ to ‘aragonite’ seas. Lower Oligocene Mg/Ca probably reflects a decrease toward the present day in sea-floor hydrothermal activity and concomitant decrease in scavenging of magnesium from seawater. Elevated Sr/Ca ratio may record lesser amounts of Oligocene aragonite precipitation and a correspondingly lower flux of strontium into the sedimentary carbonate reservoir than today.en_US
dc.format.extent456399 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© 2004 Blackwell Publishing Ltden_US
dc.titleComposition of the early Oligocene ocean from coral stable isotope and elemental chemistryen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Earth Sciences, Syracuse University, Syracuse, NY 13244, USAen_US
dc.contributor.affiliationotherCurrent Address: Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA 18015,USAen_US
dc.contributor.affiliationotherDepartment of Geology and Geological Engineering, University of Mississippi, University, MS 38677, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72914/1/j.1472-4677.2004.00025.x.pdf
dc.identifier.doi10.1111/j.1472-4677.2004.00025.xen_US
dc.identifier.sourceGeobiologyen_US
dc.identifier.citedreferenceAlibert C, McCulloch MT ( 1997 ) Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring of ENSO. Paleoceanography v ( 12 ), 345 – 363.en_US
dc.identifier.citedreferenceAnderson TF, Arthur MA ( 1983 ) Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In: Arthur, MA, Anderson, TF, Kaplan, IR, Veizer, J, Land, LS, eds. Stable Isotopes in Sedimentary Geology: Tulsa, OK, SEPM Short Course No. 10, pp. 1 – 151.en_US
dc.identifier.citedreferenceArvidson RS, Mackenzie FT, Guidry MW ( 2000 ) Ocean/atmosphere history and carbonate precipitation rates. A Solution to the ‘Dolomite Problem’?. In: CR Glenn, L PrÉvÔt-Lucas, J Lucas, eds. Marine Authigenesis: From Global to Microbial. S.E.P.M. Special Publication no. 65, pp. 1 – 5.en_US
dc.identifier.citedreferenceBeck JW, Edwards RL, Ito E, Taylor FW, Recy J, Rougerie F, Joannot P, Henin C ( 1992 ) Sea-surface temperature from coral skeleton strontium/calcium ratios. Science v ( 257 ), 644 – 647.en_US
dc.identifier.citedreferenceBeck JW, Edwards RL, Ito E, Taylor FW, Recy J, Rougerie F, Joannot P, Henin C ( 1993 ) Correction to ‘Sea-surface temperature from coral skeleton strontium/calcium ratios’. Science v ( 264 ), 891.en_US
dc.identifier.citedreferenceBerner RA ( 1991 ) A model for atmospheric CO 2 over Phanerozoic time. American Journal of Science v ( 291 ), 339 – 376.en_US
dc.identifier.citedreferenceCairns SD, Hoeksema BW, van der Land J ( 2001 ) Appendix: List of Extant Stony Corals. National Oceanic Data Center. http://www.nodc.noaa.gov/col/projects/coral/hardcoral/Hardcoralmain.htmlen_US
dc.identifier.citedreferenceCohen AL, Owens KE, Layne GD, Shimizu N ( 2002 ) The effect of algal symbionts on the accuracy of Sr/Ca paleotemperatures from coral. Science v ( 296 ), 331 – 333.en_US
dc.identifier.citedreferenceCorrege T, Delcroix T, Recy J, Beck W, Cabioch G, Cornex FL ( 2000 ) Evidence of stronger El Nino-Southern Oscillation (ENSO) events in a mid-Holocene massive coral. Paleoceanography v ( 15 ), 465 – 470.en_US
dc.identifier.citedreferenceCrowley TJ, Quinn TM, Hyde WT ( 1999 ) Validation of coral temperature calibrations. Paleoceanography v ( 14 ), 605 – 615.en_US
dc.identifier.citedreferenceDickson JA ( 2002 ) Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science v ( 298 ), 1222 – 1224.en_US
dc.identifier.citedreferenceDockery DT ( 1982 ) Lower Oligocene Bivalvia of the Vicksburg Group in Mississippi. Mississippi Department of Natural Resources Bureau of Geology. Bulletin 123, p. 261.en_US
dc.identifier.citedreferenceEngel AEJ, Engle CG ( 1964 ) Continental Accretion and the Evolution of North America. In: Subramaniam, AP, Balakrishna, A, eds. Advancing frontiers in geology and geophysics: Hyderabad, India, pp. 17 – 37.en_US
dc.identifier.citedreferenceFallon SJ, McCulloch MT, van Woesik R, Sinclair DJ ( 1999 ) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth and Planetary Science Letters v ( 172 ), 221 – 238.en_US
dc.identifier.citedreferenceFisher R, Ward K ( 1984 ) Paleoenvironmental reconstruction of the Vicksburg Group (Oligocene), Warren County, Mississippi. Mississippi Geology v ( 4 ), 1 – 9.en_US
dc.identifier.citedreferenceGaffin S ( 1987 ) Ridge Volume dependence on seafloor generation rate and inversion using long-term sealevel change. American Journal of Science v ( 287 ), 596 – 611.en_US
dc.identifier.citedreferenceGagan MK, Ayliffe LK, Hopley D, Cali JA, Mortimer GE, Chappell J, McCulloch MT, Head MJ ( 1998 ) Temperature and surface-ocean water balance of the Mid-Holocene tropical Western Pacific. Science v ( 279 ), 1014 – 1018.en_US
dc.identifier.citedreferenceGrossman EL, Ku TL ( 1986 ) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology v ( 59 ), 59 – 74.en_US
dc.identifier.citedreferenceHardie LA ( 1996 ) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. Y. Geology v ( 24 ), 279 – 283.en_US
dc.identifier.citedreferenceHeiss GA, Camoin GF, Eisenhauer A, Dullo WC, Hansen B ( 1997 ) Stable isotope and Sr/Ca-signals in corals from the Indian Ocean. Proceedings of the 8th International Coral Reef Symposium, Panama v ( 12 ), 1713 – 1718.en_US
dc.identifier.citedreferenceHorita J, Zimmermann H, Holland HD ( 2002 ) Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporates. Geochimica et Cosmochimica Acta v ( 66 ), 3733 – 3756.en_US
dc.identifier.citedreferenceHumphries SE, Thompson G ( 1978 ) Hydrothermal alteration of oceanic basalts by seawater. Geochimica et Cosmochimica Acta v ( 42 ), 107 – 125.en_US
dc.identifier.citedreferenceIvany LC, Lohmann KC, Patterson WP ( 2003 ) Paleogene temperature history of the US Gulf Coastal Plain inferred from Ä 18 O of fossil otoliths. In: Prothero, DR, Ivany, LC, Nesbitt, E, eds. From Greenhouse to Icehouse: the Marine Eocene-Oligocene Transition. Columbia University Press, pp. 232 – 251.en_US
dc.identifier.citedreferenceIvany LC, Wilkinson BW, Lohmann KC, Johnson ER, McElroy BJ, Cohen GJ ( 2004 ) Intra-annual isotopic variation in Venericardia bivalves: Implications for early Eocene climate, seasonality, and salinity on the US Gulf Coast. Journal of Sedimentary Research v ( 74 ), 7 – 19.en_US
dc.identifier.citedreferenceKahle CF ( 1965 ) Strontium in oolitic limestones. Journal of Sedimentary Petrology v ( 35 ), 846 – 856.en_US
dc.identifier.citedreferenceKobashi T, Grossman EL, Yancey TE, Dockery DT ( 2001 ) Reevaluation of conflicting Eocene tropical temperature estimates: Molluscan oxygen isotope evidence for warm low latitudes. Geology v ( 29 ), 983 – 986.en_US
dc.identifier.citedreferenceLasaga A, Berner RA, Garrels RM ( 1985 ) An improved geochemical model of atmospheric CO 2 fluctuations over the past 100 million years. In: Sundquist, ET, Broecker, WS, eds. The Carbon Cycle and Atmospheric CO 2 - Natural Variations Archean to Present: American Geophysical Union Monograph 32, pp. 397 – 411.en_US
dc.identifier.citedreferenceLear CH, Elderfield H, Wilson PA ( 2000 ) Cenozoic deep-sea temperatures and global ice Volumes from Mg/Ca in benthic foraminiferal calcite. Science v ( 287 ), 269 – 272.en_US
dc.identifier.citedreferenceLear CH, Elderfield H, Wilson PA ( 2003 ) A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering rates. Earth and Planetary Science Letters v ( 208 ), 69 – 84.en_US
dc.identifier.citedreferenceLeder JJ, Swart PK, Szmant AM, Dodge RE ( 1996 ) The origin of variations in the isotopic record of scleractinian corals; I. Oxygen: Geochimica et Cosmochimica Acta v ( 60 ), 2857 – 2870.en_US
dc.identifier.citedreferenceLowenstein TK, Timofeef MN, Brennan ST, Hardie LA, Demicco RV ( 2001 ) Occillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science v ( 294 ), 1086 – 1088.en_US
dc.identifier.citedreferenceMackenzie FT, Pigott JD ( 1981 ) Tectonic controls of Phanerozoic sedimentary rock cycling. Journal of the Geological Society v ( 138 ), 183 – 196.en_US
dc.identifier.citedreferenceMarshall JF, McCulloch MT ( 2001 ) Evidence of El Nino and the Indian Ocean Dipole from Sr/Ca derived SSTs for modern corals at Christmas Island, eastern Indian Ocean. Geophysical Research Letters v ( 28 ), 3453 – 3456.en_US
dc.identifier.citedreferenceMarshall JF, McCulloch MT ( 2002 ) An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochimica et Cosmochimica Acta v ( 66 ), 3263 – 3280.en_US
dc.identifier.citedreferenceMartin PA, Lea DW, Mashiotta TA, Papenfuss T, Sarnthein M ( 1999 ) Variation of foraminiferal Sr/Ca over Quaternary glacial-interglacial cycles: evidence for changes in mean ocean Sr/Ca?: Geochemistry, Geophysics, Geosystems: v. 1, paper 1999GC000006.en_US
dc.identifier.citedreferenceMcConnaughey T ( 1989a ) 13 C and 18 O isotopic disequilibrium in biological carbonates. I, Patterna: Geochimica et Cosmochimica Acta v ( 53 ), 151 – 162.en_US
dc.identifier.citedreferenceMcConnaughey T ( 1989b ) 13 C and 18 O isotopic disequilibrium in biological carbonates: II, In vitro simulation of kinetic isotope effects. Geochimica et Cosmochimica Acta v ( 53 ), 163 – 171.en_US
dc.identifier.citedreferenceMcConnaughey TA, Burdett J, Whelan JF, Paull CK ( 1997 ) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochimica et Cosmochimica Acta v ( 61 ), 611 – 622.en_US
dc.identifier.citedreferenceMitsuguchi T, Matsumoto E, Abe O, Uchida T, Isdale PJ ( 1996 ) Mg/Ca thermometry in coral skeletons. Science v ( 274 ), 961 – 963.en_US
dc.identifier.citedreferencePatterson WP, Smith GR, Lohmann KC ( 1993 ) Continental Paleothermometry and Seasonality Using the Isotopic Composition of Aragonitic Otoliths of Freshwater Fishes. In: Swart, P, Lohmann, KC, McKenzie, J, Savin, S, eds. Climate Change in Continental Isotopic Records, Vol. AGU Monograph 78, pp 191 – 202.en_US
dc.identifier.citedreferencePearson PN, Ditchfield PW, Singano J, Harcourt-Brown KG, Nicholas CJ, Olsson RK, Shackleton NJ, Hall MA ( 2001 ) Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature v ( 413 ), 481 – 487.en_US
dc.identifier.citedreferenceRosenthal Y, Field MP, Sherrell RM ( 1999 ) Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Analytical Chemistry v ( 71 ), 3248 – 3253.en_US
dc.identifier.citedreferenceRoulier LM, Quinn TM ( 1995 ) Seasonal- to decadal-scale climatic variability in Southwest Florida during the middle Pliocene; inferences from a coralline stable isotope record. Paleoceanography v ( 10 ), 429 – 443.en_US
dc.identifier.citedreferenceRowley DB ( 2002 ) Rate of plate creation and destruction; 180 Ma to present. Geological Society of America Bulletin v ( 114 ), 927 – 933.en_US
dc.identifier.citedreferenceSadovy Y, Severin KP ( 1992 ) Trace elements in biogenic aragonite: correlation of body growth rate and strontium levels in the otoliths of the white grunt, Haemulon plumieri (Pisces: Haemulidae). Bulletin of Marine Science v ( 50 ), 237 – 257.en_US
dc.identifier.citedreferenceSandberg PA ( 1983 ) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature v ( 305 ), 19 – 22.en_US
dc.identifier.citedreferenceSchrag DP ( 1999a ) Effects of diagenesis on the isotopic record of late Paleogene tropical sea surface temperatures. Chemical Geology v ( 161 ), 215 – 224.en_US
dc.identifier.citedreferenceSchrag DP ( 1999b ) Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanography v ( 14 ), 97 – 102.en_US
dc.identifier.citedreferenceShen C-C, Lee T, Chen C-Y, Wang C-H, Dai C-F, Li L-A ( 1996 ) The calibration of D [Sr/Ca] versus sea surface temperature relationship for Porites corals. Geochimica et Cosmochimica Acta v ( 60 ), 3849 – 3858.en_US
dc.identifier.citedreferenceSinclair DJ, Kinsley LP, McCulloch MT ( 1998 ) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochimica et Cosmochimica Acta v ( 62 ), 1889 – 1901.en_US
dc.identifier.citedreferenceSmith SV, Buddemeier RW, Redalje RC, Houck JE ( 1979 ) Strontium-calcium thermometry in coral skeletons. Science v ( 204 ), 404 – 407.en_US
dc.identifier.citedreferenceStanley SM, Hardie LA ( 1998 ) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, V. 168, 359 – 364.en_US
dc.identifier.citedreferenceStecher HA, Krantz DE, Lord CJ, Luther GW, Bock KW ( 1996 ) Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells. Geochimica Cosmochimica Acta v ( 60 ), 3445 – 3456.en_US
dc.identifier.citedreferenceSteuber T ( 2002 ) Plate tectonic control on the evolution of Cretaceous platform-carbonate production. Geology v ( 30 ), 259 – 262.en_US
dc.identifier.citedreferenceSteuber T, Veizer J ( 2002 ) Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation. Geology v ( 30 ), 1123 – 1126.en_US
dc.identifier.citedreferenceStoll HM, Schrag DP ( 1998 ) Effects of Quaternary sea level cycles on strontium in seawater. Geochimica et Cosmochimica Acta v ( 62 ), 1107 – 1118.en_US
dc.identifier.citedreferenceStoll HM, Schrag DP ( 2001 ) Sr/Ca variations in Cretaceous carbonates: relation to productivity and sea level changes. Paleogeography, Paleoclimatology, Paleoecology v ( 168 ), 311 – 336.en_US
dc.identifier.citedreferenceThompson G, Livingston HD ( 1970 ) Strontium and uranium concentrations in aragonite precipitated by some modern corals. Earth and Planetary Science Letters v ( 8 ), 439 – 442.en_US
dc.identifier.citedreferencede Villiers S, Shen GT, Nelson BK ( 1994 ) The Sr/CA-temperature relationship in coralline aragonite; influence of variability in (Sr/CA) (sub seawater) and skeletal growth parameters. Geochimica et Cosmochimica Acta v ( 58 ), 197 – 208.en_US
dc.identifier.citedreferenceWeber JN, Woodhead PMJ ( 1972 ) Temperature dependence of oxygen-18 concentration in reef coral carbonates. Journal of Geophysical Research v ( 77 ), 463 – 473.en_US
dc.identifier.citedreferenceWei G, Sun M, Li X, Nie B ( 2000 ) Mg/Ca Sr/Ca, and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Palaeogeography, Palaeoclimatology, Palaeoecology v ( 162 ), 59 – 74.en_US
dc.identifier.citedreferenceWells JW, Alderslade PN ( 1979 ) The scleractinian coral Archohelia living on the coastal shores of Queensland, Australia. Records of the Australian Museum v ( 32 ), 211 – 216.en_US
dc.identifier.citedreferenceWilkinson BH, Algeo TJ ( 1989 ) Sedimentary record of calcium-magnesium cycling. American Journal of Science v ( 289 ), 1158 – 1194.en_US
dc.identifier.citedreferenceWolery TJ, Sleep NH ( 1976 ) Hydrothermal circulation and geochemical flux at mid-ocean ridges. Journal of Geology v ( 84 ), 249 – 275.en_US
dc.identifier.citedreferenceZachos JC, Stott LD, Lohmann KC ( 1994 ) Evolution of early Cenozoic marine temperatures. Paleoceanography v ( 9 ), 353 – 387.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.