Show simple item record

Mycobacterial 65-kD heat shock protein induces release of proinflammatory cytokines from human monocytic cells

dc.contributor.authorFriedland, Jon S.en_US
dc.contributor.authorShattock, R. J.en_US
dc.contributor.authorRemick, Daniel G.en_US
dc.contributor.authorGriffin, G. E.en_US
dc.date.accessioned2010-06-01T19:47:03Z
dc.date.available2010-06-01T19:47:03Z
dc.date.issued1993-01en_US
dc.identifier.citationFRIEDLAND, J. S.; SHATTOCK, R.; REMICK, D. G.; GRIFFIN, G. E. (1993). "Mycobacterial 65-kD heat shock protein induces release of proinflammatory cytokines from human monocytic cells." Clinical & Experimental Immunology 91(1): 58-62. <http://hdl.handle.net/2027.42/72917>en_US
dc.identifier.issn0009-9104en_US
dc.identifier.issn1365-2249en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72917
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=8419086&dopt=citationen_US
dc.description.abstractMonocytes having phagocytosed mycobacteria are known to present the bacterial 65-kD heat shock protein (hsp) on their cell surface to ΑΒ and ΓΔ T lymphocytes. Cytotoxic CD4 + cells may then lyse monocytes expressing mycobacterial 65-kD hsp. However, it is not known whether 65-kD hsp directly stimulates monocyte functions other than antigen presentation. This study has demonstrated that following extraction of bacterial lipopolysaccharide, purified recombinant mycobacterial 65-kD hsp may directly activate THP-1 cells, a human monocytic line, to accumulate mRNA for and secrete tumour necrosis factor (TNF), a cytokine important in granuloma formation, the characteristic host immune response to mycobacterial infection. TNF gene expression and secretion following stimulation by hsp was dose-dependent and abolished by heat-induced proteolysis. Subsequently, THP-1 cells secreted IL-6 and IL-8, cytokines involved in recruitment and differentiation of T lymphocytes. The data indicate that secretion of proinflammatory cytokines from monocytes activated by mycobacterial 65-kD hsp may be important in the host immune response and in the development of antigen-specific T cell-mediated immunity.en_US
dc.format.extent466249 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1993 Blackwell Science Ltd, Oxforden_US
dc.subject.otherHeat Shock Proteinen_US
dc.subject.otherCytokinesen_US
dc.subject.otherMonocytesen_US
dc.titleMycobacterial 65-kD heat shock protein induces release of proinflammatory cytokines from human monocytic cellsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Department of Pathology, University of Michigan Medical School, Ann Arbor, MI. USAen_US
dc.contributor.affiliationotherDivision of Communicable Diseases, St George's Hospital Medical School, London, UKen_US
dc.identifier.pmid8419086en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72917/1/j.1365-2249.1993.tb03354.x.pdf
dc.identifier.doi10.1111/j.1365-2249.1993.tb03354.xen_US
dc.identifier.sourceClinical & Experimental Immunologyen_US
dc.identifier.citedreferenceKoga T, Wand–Wurttenberger A, DeBruyn J, Munk ME, Schoel B, Kaufmann SHE. T cells against bacterial heat shock protein recognize stressed macrophages. Science 1989; 245: 1112 – 5.en_US
dc.identifier.citedreferenceHaregewoin A, Soman G, Horn RC, Finberg RW. Human ΓΔ + T cells respond to mycobacterial heat-shock protein. Nature 1989; 340: 309 – 12.en_US
dc.identifier.citedreferenceOttenhof THM, Kale B, van Embden JDA, Thole JER, Kiessling R. The recombinant 65-kD heat shock protein of Mycobaclerium bovis bacillus Calmette-Guerin/ M. tuberculosis is a target molecule for CD4 + cytotoxic T lymphocytes that lyse human monocytes. J Exp Med 1988; 168: 1947 – 52.en_US
dc.identifier.citedreferenceChristman MF, Morgan RW, Jacobson FS, Ames BN. Positive control of regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 1985; 41: 753 – 62.en_US
dc.identifier.citedreferenceWahl SM, Allen JB, Dougherty S et al. T lymphocyte-dependent evolution of bacterial cell wall-induced hepatic granulomas. J Immunol 1986; 137: 2199 – 209.en_US
dc.identifier.citedreferenceLiew FY, Li Y, Millott S. Tumour necrosis factor (TNF-Α) in leishmaniasis. II. TNF-Α induced macrophage leishmanicidal activity is mediated by nitric oxide from L-arginine. Immunology 1990; 71: 556 – 9.en_US
dc.identifier.citedreferenceFlesch IEA, Kaufmann SHE. Activation of tuberculostatic macrophage functions by gamma interferon, interleukin-4 and tumor necrosis factor. Infect Immun 1990; 58: 2675 – 7.en_US
dc.identifier.citedreferenceFlesch IEA, Kaufmann SHE. Stimulation of antibacterial macrophage activities by B-cell stimulatory factor 2 (interteukin-6). Infect Immun 1990; 58: 269 – 71.en_US
dc.identifier.citedreferenceRook GAW, Taverne J, Leverton C, Stcele J. The role of gamma-interferon, vitamin D3, metabolites and tumour necrosis factor in the pathogenesis of tuberculosis. Immunology 1987; 62: 229 – 34.en_US
dc.identifier.citedreferenceAmiri P, Locksley RM, Parslow TG et al. Tumour necrosis factor Α restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature 1992; 356: 604 – 7.en_US
dc.identifier.citedreferenceKindler V, Sappino A, Grau GE, Piguet P, Vassalli P. The inducing role of tumour necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 1989; 56: 731 – 40.en_US
dc.identifier.citedreferenceChensue SW, Otterness IG, Higashi GI, Forsch CS, Kunkel SL. Monokine production by hypcrsensitivity ( Schistosoma mansoni egg) and foreign body (sephadex bead)-type granuloma macrophages: evidence for sequential production of IL–1 and tumour necrosis factor. J Immunol 1989; 142: 1281 – 6.en_US
dc.identifier.citedreferenceCoulie PG, Stevens M, van Snick J. High- and low-affinity receptors for murine interleukin 6. Distinct distribution on B and T cells. Eur J Immunol 1989; 19: 2107 – 14.en_US
dc.identifier.citedreferenceLotz M, Jirik F, Kabouridis P et al. B cell stimulating factor 2/interleukin 6 is a costimulant for human thymocytes and T lymphocytes. J Exp Med 1988; 167: 1253 – 8.en_US
dc.identifier.citedreferenceLarsen CG, Anderson AO, Appella E, Oppenheim JJ, Matsushima K. The neutrophil-activating protein (NAP-1) is also chemotactic for lymphocytes. Science 1989; 243: 1464 – 6.en_US
dc.identifier.citedreferenceFriedland JS, Remick DG, Shattock R, Griffin GE. Secretion of interleukin-8 following phagocytosis of Mycobaclerium tuberculosis by human monocyte cell lines. Eur J Immunol 1992; 22: 1373 – 8.en_US
dc.identifier.citedreferenceTsuchiya S, Yamahi M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and characterisation of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 1980; 26: 171 – 6.en_US
dc.identifier.citedreferenceShinnick TM, Sweetser D, Thole J, van Embden J, Young RA. The etiologic agents of leprosy and tuberculosis share an immunoreactive protein antigen with the vaccine strain Mycobaclerium bovis BCG. Infect Immun 1987; 5: 1932 – 5.en_US
dc.identifier.citedreferenceHaskill S, Johnson C, Eierman D, Becker S, Warren K. Adherence induces selective mRNA expression of monocyte mediators and protooncogenes. J Immunol 1988; 140: 1690 – 4.en_US
dc.identifier.citedreferenceLamb FI, Kingston AE, Estrada GI, Colston MJ. Heterologous expression of the 65–kilodalton antigen of Mycobacterium lepraeani murine T-cell responses to the gene product. Infect Immun 1988; 56: 1237 – 41.en_US
dc.identifier.citedreferenceBradford MM. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248 – 54.en_US
dc.identifier.citedreferenceEspevik T, Nissen-Meyer J. A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J Immunol Methods 1986; 95: 99 – 105.en_US
dc.identifier.citedreferenceAarden LA, De Groot DR, Schaap OL, Lansdorp PM. Production of hybridoma growth factor by human monocytes. Eur J Immunol 1987; 17: 1411 – 6.en_US
dc.identifier.citedreferenceUlich TR, Guo K, Remick DG, del Castillo J, Yin S. Endotoxin-induced cytokine gene expression in vivo. III. IL-6 mRNA and serum protein expression and the in vivo hematologic effects of IL-6. J Immunol 1991; 146: 2316 – 23.en_US
dc.identifier.citedreferenceDeForge LE, Remick DG. Sandwich ELISA for detection of picogram quantities of interleukin–8. Immunol Invest 1991; 20: 89 – 97.en_US
dc.identifier.citedreferenceDeForge LE, Remick DG. Kinetics of TNF, IL-6 and IL-8 gene expression in LPS-stimulated whole blood. Biochem Biophys Res Commun 1991; 174: 18 – 24.en_US
dc.identifier.citedreferenceKunkel SL, Spengler M, May MA, Spengler R, Larrick J, Remick D. Prostaglandin E2 regulates macrophage-derived tumor necrosis factor gene expression. J Biol Chem 1988; 263: 5380 – 4.en_US
dc.identifier.citedreferenceHavell EA. Evidence that tumor necrosis factor has an important role in antibacterial resistance. J Immunol 1989; 143: 2894 – 9.en_US
dc.identifier.citedreferenceHoussiau FA, Coulie PG, van Snick J. Distinct roles of IL-1 and IL-6 in human T cell activation. J Immunol 1989; 143: 2520 – 4.en_US
dc.identifier.citedreferenceFriedland JS, Suputtamongkol Y, Remick DG et al. Prolonged elevation of interleukin–8 and interleukin–6 concentrations in plasma and of leukocyte interleukin–8 mRNA levels during septicemic and localized Pseudomonas pseudomallei infection. Infect Immun 1992; 60: 2402 – 8.en_US
dc.identifier.citedreferenceOrme IM, Miller ES, Roberts AD et al. T lymphocytes mediating protection and cellular cytolysis during the course of Mycobaclerium tuberculosis infection: evidence for different kinetics and recognition ofa wide spectrum of protein antigens. J Immunol 1992; 148: 189 – 96.en_US
dc.identifier.citedreferenceWallis RS, Fujiwara H, Ellner JJ. Direct stimulation of monocyte release of interleukin–1 mycobacterial protein antigens. J Immunol 1986; 136: 193 – 6.en_US
dc.identifier.citedreferenceMoreno C, Taverne J, Mehlert A et al. Lipoarabinomannan from Mycobaclerium tuberculosis induces the production of tumour necrosis factor from human and murine macrophages. Clin Exp Immunol 1989; 76: 240 – 5.en_US
dc.identifier.citedreferenceCohen IR, Young DB. Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today 1991; 12: 105 – 10.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.