Show simple item record

Control of mucosal polymicrobial populations by innate immunity

dc.contributor.authorMason, Katie L.en_US
dc.contributor.authorHuffnagle, Gary B.en_US
dc.date.accessioned2010-06-01T19:48:39Z
dc.date.available2010-06-01T19:48:39Z
dc.date.issued2009-09en_US
dc.identifier.citationMason, Katie L.; Huffnagle, Gary B. (2009). "Control of mucosal polymicrobial populations by innate immunity." Cellular Microbiology 11(9): 1297-1305. <http://hdl.handle.net/2027.42/72943>en_US
dc.identifier.issn1462-5814en_US
dc.identifier.issn1462-5822en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72943
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19558617&dopt=citationen_US
dc.description.abstractThe gastrointestinal tract carries out the complex process of localizing the polymicrobial populations of the indigenous microbiota to the lumenal side of the GI mucosa while absorbing nutrients from the lumen and preventing damage to the mucosa. This process is accomplished through a combination of physical, innate and adaptive host defences and a ‘strategic alliance’ with members of the microbiota. To cope with the constant exposure to a diverse microbial community, the GI tract, through the actions of a number of specialized cells in the epithelium and lamina propria, has layers of humoral, physical and cellular defences that limit attachment, invasion and dissemination of the indigenous microbiota. However, the role of the microbiota in this dynamic balance is vital and serves as another level of ‘innate’ defence. We are just beginning to understand how bacterial metabolites aid in the control of potential pathogens within the microbiota and limit inflammatory responses to the microbiota, concepts that will impact our understanding of the biological effects of antibiotics, diet and probiotics on mucosal inflammatory responses.en_US
dc.format.extent294824 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2009 Blackwell Publishing Ltden_US
dc.titleControl of mucosal polymicrobial populations by innate immunityen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationotherPulmonary Division, Department of Internal Medicine anden_US
dc.identifier.pmid19558617en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72943/1/j.1462-5822.2009.01347.x.pdf
dc.identifier.doi10.1111/j.1462-5822.2009.01347.xen_US
dc.identifier.sourceCellular Microbiologyen_US
dc.identifier.citedreferenceAndoh, A., Fujiyama, Y., Hata, K., Araki, Y., Takaya, H., Shimada, M., and Bamba, T. ( 1999 ) Counter-regulatory effect of sodium butyrate on tumour necrosis factor-alpha (TNF-alpha) -induced complement C3 and factor B biosynthesis in human intestinal epithelial cells. Clin Exp Immunol 118: 23 – 29.en_US
dc.identifier.citedreferenceAyabe, T., Satchell, D., Wilson, C., Parks, W.C., Selsted, M.E., and Ouellette, A.J. ( 2000 ) Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 1: 99 – 100.en_US
dc.identifier.citedreferenceBach Knudsen, K.E., Serena, A., Canibe, N., and Juntunen, K.S. ( 2003 ) New insight into butyrate metabolism. Proc Nutr Soc 62: 81 – 86.en_US
dc.identifier.citedreferenceBals, R., and Wilson, J.M. ( 2003 ) Cathelicidins-a family of multifunctional antimicrobial peptides. Cell Mol Life Sci 60: 711 – 720.en_US
dc.identifier.citedreferenceBohmig, G.A., Krieger, P.M., Saemann, M.D., Wenhardt, C., Pohanka, E., and Zlabinger, G.J. ( 1997 ) n-butyrate downregulates the stimulatory function of peripheral blood-derived antigen-presenting cells: a potential mechanism for modulating T-cell responses by short-chain fatty acids. Immunology 92: 234 – 243.en_US
dc.identifier.citedreferenceBrandl, K., Plitas, G., Mihu, C.N., Ubeda, C., Jia, T., Fleisher, M., et al. ( 2008 ) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455: 804 – 807.en_US
dc.identifier.citedreferenceCash, H.L., Whitham, C.V., Behrendt, C.L., and Hooper, L.V. ( 2006 ) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313: 1126 – 1130.en_US
dc.identifier.citedreferenceCavaglieri, C.R., Nishiyama, A., Fernandes, L.C., Curi, R., Miles, E.A., and Calder, P.C. ( 2003 ) Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sci 73: 1683 – 1690.en_US
dc.identifier.citedreferenceDavidson, D.J., Currie, A.J., Reid, G.S.D., Bowdish, D.M.E., MacDonald, K.L., Ma, R.C., et al. ( 2004 ) The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 172: 1146 – 1156.en_US
dc.identifier.citedreferenceDieckgraefe, B.K., Crimmins, D.L., Landt, V., Houchen, C., Anant, S., Porche-Sorbet, R., and Ladenson, J.H. ( 2002 ) Expression of the regenerating gene family in inflammatory bowel disease mucosa: regIα upregulation, processing, and antiapoptotic activity. J Investig Med 50: 421 – 434.en_US
dc.identifier.citedreferenceEdelman, S., and Kasper, D. ( 2008 ) Symbiotic commensal bacteria direct maturation of the host immune system. Current Opinion Gastroenterology 24: 720 – 724.en_US
dc.identifier.citedreferenceGalvez, A., Abriouel, H., Lopez, R.L., and Ben Omar, N. ( 2007 ) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120: 51 – 70.en_US
dc.identifier.citedreferenceGanz, T. ( 2004 ) Antimicrobial polypeptides. J Leukoc Biol 75: 34 – 38.en_US
dc.identifier.citedreferenceHarris, G., Kuo Lee, R., and Chen, W. ( 2006 ) Role of Toll-like receptors in health and diseases of gastrointestinal tract. World J Gastroenterol 12: 2149 – 2160.en_US
dc.identifier.citedreferenceHarwig, S.S., Tan, L., Qu, X.D., Cho, Y., Eisenhauer, P.B., and Lehrer, R.I. ( 1995 ) Bactericidal properties of murine intestinal phospholipase A2. J Clin Invest 95: 603 – 610.en_US
dc.identifier.citedreferenceHase, K., Eckmann, L., Leopard, J.D., Varki, N., and Kagnoff, M.F. ( 2002 ) Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 70: 953 – 963.en_US
dc.identifier.citedreferenceHershberg, R.M., and Mayer, L.F. ( 2000 ) Antigen processing and presentation by intestinal epithelial cells-polarity and complexity. Immunol Today 21: 123 – 128.en_US
dc.identifier.citedreferenceHooper, L.V., Stappenbeck, T.S., Hong, C.V., and Gordon, J.I. ( 2003 ) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4: 269 – 273.en_US
dc.identifier.citedreferenceHsiao, W.W., Metz, C., Singh, D.P., and Roth, J. ( 2008 ) The microbes of the intestine: an introduction to their metabolic and signaling capabilities. Endocrinol Metab Clin North Am 37: 857 – 871.en_US
dc.identifier.citedreferenceInagaki-Ohara, K., Chinen, T., Matsuzaki, G., Sasaki, A., Sakamoto, Y., Hiromatsu, K., et al. ( 2004 ) Mucosal T cells bearing TCR γδ play a protective role in intestinal inflammation. J Immunol 173: 1390 – 1398.en_US
dc.identifier.citedreferenceInagaki-Ohara, K., Sawaguchi, A., Suganuma, T., Matsuzaki, G., and Nawa, Y. ( 2005 ) Intraepithelial lymphocytes express junctional molecules in murine small intestine. Biochem Biophys Res Commun 331: 977 – 983.en_US
dc.identifier.citedreferenceKagan, B.L., Selsted, M.E., Ganz, T., and Lehrer, R.I. ( 1990 ) Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci USA 87: 210 – 214.en_US
dc.identifier.citedreferenceKerr, M.A. ( 1990 ) The structure and function of human IgA. Biochem J 271: 285 – 296.en_US
dc.identifier.citedreferenceKingdon, H., Pothoulakis, C., Thim, L., Devaney, K., and Podolsky, D.K. ( 1995 ) Trefoil peptide protectin of intestinal epithelial barrier function: co-operative interaction with mucin glycoprotein. Gastroenterology 109: 516.en_US
dc.identifier.citedreferenceKnight, P.A., Brown, J.K., and Pemberton, A.D. ( 2008 ) Innate immune response mechanisms in the intestinal epithelium: potential roles for mast cells and goblet cells in the expulsion of adult Trichinella sprialis. Parasitology 135: 655 – 670.en_US
dc.identifier.citedreferenceKoczulla, R., von Degenfeld, G., Kupatt, C., KrÖtz, F., Zahler, S., Gloe, T., et al. ( 2003 ) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111: 1665 – 1672.en_US
dc.identifier.citedreferenceLouis, P., and Flint, H.J. ( 2009 ) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294: 1 – 8.en_US
dc.identifier.citedreferenceMillard, A.L., Mertes, P.M., Ittelet, D., Villard, F., Jeannesson, P., and Bernard, J. ( 2002 ) Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin Exp Immunol 130: 245 – 255.en_US
dc.identifier.citedreferenceMukherjee, S., Vaishnava, S., and Hooper, L.V. ( 2008 ) Multi-layered regulation of intestinal antimicrobial defense. Cell Mol Life Sci 65: 3019 – 3027.en_US
dc.identifier.citedreferenceNagler-Anderson, C., Terhoust, C., Bhan, A.K., and Podolsky, D.K. ( 2001 ) Mucosal antigen presentation and the control of tolerance and immunity. Trends Immunol 22: 120 – 122.en_US
dc.identifier.citedreferenceNasrat, A., Turner, J.R., and Madara, J.L. ( 2000 ) Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrient, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol 279: 851 – 857.en_US
dc.identifier.citedreferenceOkamoto, T., Sasaki, M., Tsujikawa, T., Fujiyama, Y., Bamba, T., and Kusunoki, M. ( 2000 ) Preventive efficacy of butyrate enemas and oral administration of Clostridium butyricum M588 in dextran sodium sulfate-induced colitis in rats. J Gastroenterol 35: 341 – 346.en_US
dc.identifier.citedreferenceOuellette, A.J., and Selsted, M.E. ( 1996 ) Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB J 10: 1280 – 1289.en_US
dc.identifier.citedreferenceQing-Hua, Y., and Qian, Y. ( 2009 ) Diversity of tight junctions (TJs) between gastrointestinal epithelial cells and their function in maintaining the mucosal barrier. Cell Biol Int 33: 78 – 82.en_US
dc.identifier.citedreferenceReading, N.C., and Sperandio, V. ( 2006 ) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254: 1 – 11.en_US
dc.identifier.citedreferenceRescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., et al. ( 2001 ) Dendritic cells express tight junction proteins and penetrate gut pepithelial monolayers to sample bacteria. Nat Immunol 2: 361 – 367.en_US
dc.identifier.citedreferenceRiley, M.A. ( 1998 ) Molecular mechanisms of bacteriocin evolution. Annu Rev Genet 32: 255 – 278.en_US
dc.identifier.citedreferenceRimoldi, M., Chieppa, M., Salucci, V., Avogadri, F., Sonzogni, A., Sampietro, G.M., et al. ( 2005 ) Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol 1029: 66 – 74.en_US
dc.identifier.citedreferenceRogler, G., Andus, T., Aschenbrenner, E., Vogl, D., Falk, W., Scholmerich, J., and Gross, V. ( 1997 ) Alterations of the phenotype of colonic macrophages in inflammatory bowel disease. Eur J Gastroenterol Hepatol 9: 893 – 899.en_US
dc.identifier.citedreferenceRugtveit, J., Bakka, A., and Brandtzaeg, P. ( 1997 ) Differential distribution of B7.1 (CD80) and B7.2 (CD86) costimulatory molecules on mucosal macrophage subsets in human inflammatory bowel disease (IBD). Clin Exp Immunol 110: 104 – 113.en_US
dc.identifier.citedreferenceSÄemann, M.D., BÖhmig, G.A., Osterreicher, C.H., Burtscher, H., Parolini, O., Diakos, C., et al. ( 2000 ) Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J 14: 2380 – 2382.en_US
dc.identifier.citedreferenceSÄemann, M.D., Parolini, O., BÖhmig, G.A., Kelemen, P., Krieger, P.M., NeumÜller, J., et al. ( 2002 ) Bacterial metabolite interference with maturation of human monocyte-derived dendritic cells. J Leukoc Biol 71: 238 – 246.en_US
dc.identifier.citedreferenceSelsted, M.E., and Ouellette, A.J. ( 2005 ) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6: 551 – 557.en_US
dc.identifier.citedreferenceShibahara, Y., Miyazaki, K., Sato, D., Matsui, H., Yanaka, A., Nakahara, A., and Tanaka, N. ( 2005 ) Alteration of intestinal epithelial function by intraepithelial lymphocyte homing. J Gastroenterol 40: 878 – 886.en_US
dc.identifier.citedreferenceSmythies, L.E., Sellers, M., Clements, R.H., Mosteller-Barnum, M., Meng, G., Benjamin, W.H., et al. ( 2005 ) Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 115: 66 – 75.en_US
dc.identifier.citedreferenceTelford, G., Wheeler, D., Williams, P., Tomkins, P.T., Appleby, P., Sewell, H., et al. ( 1998 ) The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect Immun 66: 36 – 42.en_US
dc.identifier.citedreferenceThim, L., Madsen, F., and Poulsen, S.S. ( 2002 ) Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur J Clin Invest 32: 519 – 527.en_US
dc.identifier.citedreferenceTsukahara, T., Koyama, H., Okada, M., and Ushida, K. ( 2002 ) Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria. J Nutr 132: 2229 – 2234.en_US
dc.identifier.citedreferenceTyrer, P., Foxwell, A.R., Kyd, J.M., Harvey, M., Sizer, P., and Cripps, A.W. ( 2002 ) Validation and quantification of an in vitro M cell model. Biochem Biophys Res Commun 299: 377 – 383.en_US
dc.identifier.citedreferenceTyrer, P., Foxwell, A.R., Cripps, A.W., Apicella, A.M., and Kyd, J.M. ( 2006 ) Microbial pattern recognition receptors mediate M-cell uptake of a Gram-negative bacterium. Infect Immun 74: 625 – 631.en_US
dc.identifier.citedreferenceVadas, P., Browning, J., Edelson, J., and Pruzanski, W. ( 1993 ) Extracellular phospholipase A2 expression and inflammation: the relationship with associated disease states. J Lipid Mediat 8: 1 – 30.en_US
dc.identifier.citedreferenceVenkatraman, A., Ramakrishna, B.S., Pulimood, A.B., Patra, S., and Murthy, S. ( 2000 ) Increased permeability in dextran sulphate colitis in rats: time course of development and effect of butyrate. Scand J Gastroenterol 35: 1053 – 1059.en_US
dc.identifier.citedreferenceWullt, M., Hagslatt, M.J., Odenholt, I., and Berggren, A. ( 2007 ) Lactobacillus plantarum 299v enhances the concentrations of fecal short-chain fatty acids in patients with recurrent clostridium difficile-associated diarrhea. Dig Dis Sci 52: 2082 – 2086.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.