Show simple item record

Physiological role of the GlnK signal transduction protein of Escherichia coli : survival of nitrogen starvation

dc.contributor.authorBlauwkamp, Timothy A.en_US
dc.contributor.authorNinfa, Alexander J.en_US
dc.date.accessioned2010-06-01T19:49:05Z
dc.date.available2010-06-01T19:49:05Z
dc.date.issued2002-10en_US
dc.identifier.citationBlauwkamp, Timothy A.; Ninfa, Alexander J. (2002). "Physiological role of the GlnK signal transduction protein of Escherichia coli : survival of nitrogen starvation ." Molecular Microbiology 46(1): 203-214. <http://hdl.handle.net/2027.42/72950>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72950
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12366843&dopt=citationen_US
dc.description.abstractEscherichia coli contains two PII-like signal trans-duction proteins, PII and GlnK, involved in nitrogen assimilation. We examined the roles of PII and GlnK in controlling expression of glnALG , glnK and nac during the transition from growth on ammonia to nitrogen starvation and vice versa. The PII protein exclusively controlled glnALG expression in cells adapted to growth on ammonia, but was unable to limit nac and glnK expression under conditions of nitrogen starvation. Conversely, GlnK was unable to limit glnALG expression in cells adapted to growth on ammonia, but was required to limit expression of the glnK and nac promoters during nitrogen starvation. In the absence of GlnK, very high expression of the glnK and nac promoters occurred in nitrogen-starved cells, and the cells did not reduce glnK and nac expression when given ammonia. Thus, one specific role of GlnK is to regulate the expression of Ntr genes during nitrogen starvation. GlnK also had a dramatic effect on the ability of cells to survive nitrogen starvation and resume rapid growth when fed ammonia. After being nitrogen starved for as little as 10 h, cells lacking GlnK were unable to resume rapid growth when given ammonia. In contrast, wild-type cells that were starved immediately resumed rapid growth when fed ammonia. Cells lacking GlnK also showed faster loss of viability during extended nitrogen starvation relative to wild-type cells. This complex phenotype resulted partly from the requirement for GlnK to regulate nac expression; deletion of nac restored wild-type growth rates after ammonia starvation and refeeding to cells lacking GlnK, but did not improve viability during nitrogen starvation. The specific roles of GlnK during nitrogen starvation were not the result of a distinct function of the protein, as expression of PII from the glnK promoter in cells lacking GlnK restored the wild-type phenotypes.en_US
dc.format.extent662508 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science, Ltden_US
dc.rightsBlackwell Science, 2002en_US
dc.titlePhysiological role of the GlnK signal transduction protein of Escherichia coli : survival of nitrogen starvationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biological Chemistry, University of Michigan Medical School, 1301 E. Catherine, Ann Arbor, MI 48109-0606, USA.en_US
dc.identifier.pmid12366843en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72950/1/j.1365-2958.2002.03153.x.pdf
dc.identifier.doi10.1046/j.1365-2958.2002.03153.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceArcondeguy, T., van Heeswijk, W. C., and Merrick, M. ( 1999 ) Studies on the roles of GlnK and GlnB in regulating Klebsiella pneumoniae NifL-dependent nitrogen control. FEMS Microbiol Lett 180: 263 – 270.en_US
dc.identifier.citedreferenceArcondeguy, T., Lawson, D., and Merrick, M. ( 2000 ) Two residues in the T-loop of GlnK determine NifL-dependent nitrogen control of nif gene expression. J Biol Chem 275: 38452 – 38456.en_US
dc.identifier.citedreferenceAtkinson, M. R., and Ninfa, A. J. ( 1993 ) Mutational analysis of the bacterial signal-transducing protein kinase/phosphatase nitrogen regulator II (NRII or NtrB). J Bacteriol 175: 7016 – 7023.en_US
dc.identifier.citedreferenceAtkinson, M. R., and Ninfa, A. J. ( 1998 ) Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli. Mol Microbiol 29: 431 – 447.en_US
dc.identifier.citedreferenceAtkinson, M. R., and Ninfa, A. J. ( 1999 ) Characterization of the GlnK protein of Escherichia coli. Mol Microbiol 32: 301 – 313.en_US
dc.identifier.citedreferenceAtkinson, M. R., Blauwkamp, T. A., Bondarenko, V. A., Studitsky, V. M., and Ninfa, A. J. ( 2002a ) Activation of the glnA, glnK, and nac promoters as Escherichia coli makes the transition from growth on ammonia to nitrogen starvation. J Bacteriol ( in press ).en_US
dc.identifier.citedreferenceAtkinson, M. R., Blauwkamp, T. A., and Ninfa, A. J. ( 2002b ) Context-dependent functions of the PII and GlnK signal-transduction proteins in Escherichia coli. J Bacteriol ( in press ).en_US
dc.identifier.citedreferenceBackman, K., Chen, Y.- M., and Magasanik, B. ( 1981 ) Physical and genetic characterization of the glnA-glnG region of the Escherichia coli chromosome. Proc Natl Acad Sci USA 78: 3743 – 3747.en_US
dc.identifier.citedreferenceBlauwkamp, T. A., and Ninfa, A. J. ( 2002 ) Nac-mediated repression of the serA promoter in Escherichia coli. Mol Microbiol 45: 351 – 363.en_US
dc.identifier.citedreferenceBueno, R., Pahel, G., and Magasanik, B. ( 1985 ) Role of glnB and glnD gene products in regulation of the glnALG operon of Escherichia coli. J Bacteriol 164: 816 – 822.en_US
dc.identifier.citedreferenceFeng, J., Goss, T. J., Bender, R. A., and Ninfa, A. J. ( 1995 ) Activation of transcription initiation from the nac promoter of Klebsiella aerogenes. J Bacteriol 19: 5523 – 5534.en_US
dc.identifier.citedreferencevan Heeswijk, W. C., Hoving, S., Molenaar, D., Stegeman, B., Kahn, D., and Westerhoff, H. V. ( 1996 ) An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli. Mol Microbiol 21: 133 – 146.en_US
dc.identifier.citedreferenceJack, R., De Zamaroczy, M., and Merrick, M. ( 1999 ) The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae. J Bacteriol 181: 1156 – 1162.en_US
dc.identifier.citedreferenceKustu, S., Santero, E., Keener, J., Popham, D., and Weiss, D. ( 1989 ) Expression of a sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev 53: 367 –3 76.en_US
dc.identifier.citedreferenceManiatis, T., Fritsch, E. F., and Sambrook, J. ( 1982 ) Molecular Cloning, A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 68 and 250.en_US
dc.identifier.citedreferenceMerrick, M. J., and Edwards, R. A. ( 1995 ) Nitrogen control in bacteria. Microbiol Rev 59: 604 – 622.en_US
dc.identifier.citedreferenceMiller, J. H. ( 1992 ) A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 72 – 74.en_US
dc.identifier.citedreferenceNinfa, A. J., Jiang, P., Atkinson, M. R., and Peliska, J. A. ( 2000 ) Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. Curr Topics Cell Regul 36: 31 – 75.en_US
dc.identifier.citedreferencePahel, G., Zelentz, A. D., and Tyler, B. M. ( 1978 ) gltB gene and regulation of nitrogen metabolism by glutamine synthetase in Escherichia coli. J Bacteriol 133: 139 – 148.en_US
dc.identifier.citedreferencePahel, G., Rothstein, D. M., and Magasanik, B. ( 1982 ) Complex glnA–glnL–glnG operon of Escherichia coli. J Bacteriol 150: 202 – 213.en_US
dc.identifier.citedreferenceReitzer, L. J., and Magasanik, B. ( 1985 ) Expression of glnA in Escherichia coli is regulated at tandem promoters. Proc Natl Acad Sci USA 82: 1979 – 1983.en_US
dc.identifier.citedreferenceShiau, S. P., Schneider, B. L., Gu, W., and Reitzer, L. J. ( 1992 ) Role of nitrogen regulator I (NtrC), the transcriptional activator of glnA. enteric bacteria, in reducing expression of glnA during nitrogen-limited growth. J Bacteriol 174: 179 – 185.en_US
dc.identifier.citedreferenceSilhavy, T. J., Berman, M. L., and Enquist, L. W. ( 1984 ) Experi-ments with Gene Fusions. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 107 – 112.en_US
dc.identifier.citedreferenceSimons, R. W., Houman, F., and Kleckner, N. ( 1987 ) Improved single copy and multicopy lac -based cloning vectors for protein and operon fusions. Gene 53: 85 – 96.en_US
dc.identifier.citedreferenceStauffer, G. V. ( 1996 ) Biosynthesis of serine, glycine, and one-carbon units. In Escherichia coli and Salmonella. Cellular and Molecular Biology, 2nd edn. Neidhardt, F. C. (ed. in chief). Washington, DC: American Society for Microbiology Press, pp. 506 – 513.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.