Show simple item record

IGF-I Promotes Peripheral Nervous System Myelination

dc.contributor.authorCheng, Hsin-Linen_US
dc.contributor.authorRussell, James W.en_US
dc.contributor.authorFeldman, Eva L.en_US
dc.date.accessioned2010-06-01T19:49:29Z
dc.date.available2010-06-01T19:49:29Z
dc.date.issued1999-10en_US
dc.identifier.citationCHENG, HSIN-LIN; RUSSELL, JAMES W.; FELDMAN, EVA L. (1999). "IGF-I Promotes Peripheral Nervous System Myelination." Annals of the New York Academy of Sciences 883(1 CHARCOT-MARIE-TOOTH DISORDERS ): 124-130. <http://hdl.handle.net/2027.42/72957>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72957
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=10586238&dopt=citationen_US
dc.description.abstractInsulin-like growth factor-I (IGF-I) promotes the proliferation and differentiation of Schwann cells (SC). We use SC/dorsal root ganglion neuron (DRG) cocultures to examine the effects of IGF-I on the interaction between axons and SC. As SC extend processes toward the axon in the presence of IGF-I, these processes attach to and ensheath axons. Continued IGF-I exposure leads to enhanced P 0 expression and long-term myelination. No myelination occurs in the absence of IGF-I. These data imply that IGF-I is critical not only for SC attachment and ensheathment of axons but also for long-term myelination.en_US
dc.format.extent5196417 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsNew York Academy of Sciences 1999en_US
dc.titleIGF-I Promotes Peripheral Nervous System Myelinationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Neurology,University of Michigan, 200 Zina Pitcher Place, 4414 Kresge III, Ann Arbor, Michigan 48109–0588, USAen_US
dc.contributor.affiliationumVeterans Administration Medical Center, University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.identifier.pmid10586238en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72957/1/j.1749-6632.1999.tb08575.x.pdf
dc.identifier.doi10.1111/j.1749-6632.1999.tb08575.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceC, C.A. 1932. Studies on living nerves. I. The movement of individual sheath cells and nerve sprouts correlated with the process of myelin sheath formation in amphibian larvae. J. Exp. Zool. 61: 279.en_US
dc.identifier.citedreferenceC, C.C. 1964. In vivo studies of myelinated nerve fibers. Int. Rev. Cytol. 16: 173.en_US
dc.identifier.citedreference3 Webster, H. 1993. Development of peripheral nerve fibers. In Peripheral Neuropathy. P.J. Dyck, P.K. Thomas, J.W. Griffin, P.A. Low & J.F. Podulso, Eds.: 243–266. Saunders. Philadelphia.en_US
dc.identifier.citedreferenceDe Meyts, P., B. Wallach, C.T. Christoffersen, B. Urso, K. Gronskov, L.-J. Latus, F. Yakushiji, M.M. Ilondo & R.M. Shymko. 1994. The insulin-like growth factor-I receptor. Structure, ligand-binding mechanism and signal transduction. Horm. Res. 42: 152 – 169.en_US
dc.identifier.citedreferenceHansson, H.A., L.B. Dahlin, N. Danielsen, L. Fryklund, A.K. Nachemson, P. Polleryd, B. Rozell, A. Skottner, S. Stemme & G. Lundborg. 1986. Evidence indicating trophic importance of IGF-I in regenerating peripheral nerves. Acta Physiol. Scand. 126: 609 – 614.en_US
dc.identifier.citedreferenceCheng, H-L., A. Randolph, D. Yee, P. Delafontaine, G. Tennekoon & E.L. Feldman. 1996. Characterization of insulin-like growth factor-I (IGF-I), IGF-I receptor and binding proteins in transected nerves and cultured Schwann cells. J. Neurochem. 66: 525 – 536.en_US
dc.identifier.citedreferenceGavrilovic, J., A. Brennan, R. Mirsky & K.R. Jessen. 1995. Fibroblast growth factors and insulin growth factors combine to promote survival of rat Schwann cell precursors without induction of DNA synthesis. Eur. J. Neurosci. 7: 77 – 85.en_US
dc.identifier.citedreferenceGlazner, G.W., & D.N. Ishii. 1995. Insulin-like growth factor gene expression in rat muscle during reinnervation. Muscle Nerve 18: 1433 – 1442.en_US
dc.identifier.citedreferenceNear, S.L., L.R. Whalen, J.A. Miller & D.N. Ishii. 1992. Insulin-like growth factor II stimulates motor nerve regeneration. Proc. Natl. Acad. Sci. USA 89: 11716 – 11720.en_US
dc.identifier.citedreferenceMcMorris, F.A., R.L. Mozell, M.J. Carson, Y. Shinar, R.D. Meyer & N. Marchetti. 1993. Regulation of oligodendrocyte development and central nervous system myelination by insulin-like growth factors. Ann. N.Y. Acad. Sci. 692: 321 – 334.en_US
dc.identifier.citedreferenceMcMorris, F.A., R.W. Furlanetto, R.L. Mozell, M.J. Carson & D.W. Raible. 1990. Regulation of oligodendrocyte development by insulin-like growth factors and cyclic nucleotides. Ann. N.Y. Acad. Sci. 605: 101 – 109.en_US
dc.identifier.citedreferenceMozell, R.L., & F.A. McMorris. 1991. Insulin-like growth factor I stimulates oligodendrocyte development and myelination in rat brain aggregate cultures. J. Neurosci. Res. 30: 382 – 390.en_US
dc.identifier.citedreferenceCarson, M.J., R.R. Behringer, R.L. Brinster & F.A. McMorris. 1993. Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 10: 729 – 740.en_US
dc.identifier.citedreferenceBeck, K.D., L. Powell-Braxton, H-R. Widmer, J. Valverde & F. Hefti. 1995. Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 14: 717 – 730.en_US
dc.identifier.citedreferenceHansson, H.-A. 1993. Insulin-like growth factors and nerve regeneration. Ann. N.Y. Acad. Sci. 692: 161 – 171.en_US
dc.identifier.citedreferenceBrockes, J.P., K.L. Fields & M.C. Raff. 1979. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 165: 105 – 118.en_US
dc.identifier.citedreference17 Mezei, C. 1993. Myelination in the peripheral nerve during develpment. In Peripheral Neuropathy. P.J. Dyck, P.K. Thomas, J.W. Griffin, P.A. Low & J.F. Poduslo, Eds.: 267–281. Saunders. Philadelphia.en_US
dc.identifier.citedreferenceYamada, H., A. Komiyama & K. Suzuki. 1995. Schwann cell responses to forskolin and cyclic AMP analogues: comparative study of mouse and rat Schwann cells. Brain Res. 681: 97 – 104.en_US
dc.identifier.citedreferenceRutkowski, L., L. Needham, K. Frayer, D. Carson, G. McKhann & G.I. Tennekoon. 1990. Evidence that secondary rat Schwann cells in culture maintain their differentiated phenotype. J. Neurochem. 54: 1895 – 1904.en_US
dc.identifier.citedreferenceDe Deyne, P.G., G.H. De Vries & J.W. Bigbee. 1994. cAMP-induced morphological changes in an immortalized Schwann cell line: a prelude to differentiation ?. Cell. Motil. Cytoskel. 29: 20 – 28.en_US
dc.identifier.citedreferenceMorgan, L., K.R. Jessen & R. Mirsky. 1991. The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04 + ) to a myelin phenotype (P 0 +, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition. J. Cell Biol. 112: 457 – 467.en_US
dc.identifier.citedreferenceMirsky, R., & K.R. Jessen. 1996. Schwann cell development, differentiation and myelination. Curr. Opin. Neurobiol. 6: 89 – 96.en_US
dc.identifier.citedreferenceDong, Z., A. Brennan, N. Liu, Y. Yarden, G. Lefkowitz, R. Mirsky & K.R. Jessen. 1995. Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron 15: 585 – 596.en_US
dc.identifier.citedreferenceJessen, K.R., A. Brennan, L. Morgan, R. Mirsky, A. Kent, Y. Hashimoto & J. Gavrilovic. 1994. The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves. Neuron 12: 509 – 527.en_US
dc.identifier.citedreferenceRoth, G.A., V. Spada, K. Hamill & M.B. Bornstein. 1995. Insulin-like growth factor-I increases myelination and inhibits demyelination in cultured organotypic nerve tissue. Brain Res. Dev. Brain Res. 88: 102 – 108.en_US
dc.identifier.citedreferenceYe, P., J. Carson & A.J. D'Ercole. 1995. In vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice. J. Neurosci. 15: 7344 – 7356.en_US
dc.identifier.citedreference27 Leventhal, P.S., J.W. Russell & E.L. Feldman. 1999. IGFs and the nervous system. In Contemporary Endocrinology: The IGF System. R. Rosenfeld & C. Roberts, Jr., Eds. Humana Press. Totowa, NJ.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.